Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nilboy/gaic_track3_pair_sim
全球人工智能技术创新大赛-赛道三-冠军方案
https://github.com/nilboy/gaic_track3_pair_sim
text-pair
Last synced: 2 months ago
JSON representation
全球人工智能技术创新大赛-赛道三-冠军方案
- Host: GitHub
- URL: https://github.com/nilboy/gaic_track3_pair_sim
- Owner: nilboy
- Created: 2021-03-30T13:02:56.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-07-12T08:45:07.000Z (over 3 years ago)
- Last Synced: 2024-08-03T09:07:06.046Z (6 months ago)
- Topics: text-pair
- Language: Python
- Homepage:
- Size: 159 KB
- Stars: 235
- Watchers: 2
- Forks: 59
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- StarryDivineSky - nilboy/gaic_track3_pair_sim - 赛道三-冠军方案 (文本匹配 文本检索 文本相似度 / 其他_文本生成、文本对话)
README
# gaic_track3_pair_sim
[全球人工智能技术创新大赛-赛道三-冠军方案](https://yiwise-algo.yuque.com/docs/share/5a1e3b76-4d04-4127-979a-496d7bc8c1b8?#%20%E3%80%8A%E7%9F%AD%E6%96%87%E6%9C%AC%E7%9B%B8%E4%BC%BC%E5%8C%B9%E9%85%8D%E3%80%8B)
## 比赛主页
https://tianchi.aliyun.com/competition/entrance/531851/introduction## 数据
本项目没有提供数据,如果需要数据,请到天池比赛主页下载## 预训练模型准备
* 下载预训练模型
- nezha-base:
https://drive.google.com/file/d/1HmwMG2ldojJRgMVN0ZhxqOukhuOBOKUb/view?usp=sharing
- nezha-large:
https://drive.google.com/file/d/1EtahNvdjEpugm8juFuPIN_Fs2skFmeMU/view?usp=sharing
- uer/bert-base:
https://share.weiyun.com/5QOzPqq
- uer/bert-large:
https://share.weiyun.com/5G90sMJ
- macbert, chinese-bert-wwm-ext, chinese-roberta-wwm-ext-large
https://huggingface.co/models
* 预训练模型开源仓库
- https://github.com/dbiir/UER-py
- https://github.com/huawei-noah/Pretrained-Language-Model
* 下载并解压, 解压到文件夹 data, 文件夹结构如下:
```
data/
└── official_model
└── download
├── chinese-bert-wwm-ext
│ ├── added_tokens.json
│ ├── config.json
│ ├── pytorch_model.bin
│ ├── special_tokens_map.json
│ ├── tokenizer_config.json
│ └── vocab.txt
├── chinese-roberta-wwm-ext-large
│ ├── config.json
│ ├── pytorch_model.bin
│ ├── special_tokens_map.json
│ ├── tokenizer.json
│ ├── tokenizer_config.json
│ └── vocab.txt
├── macbert-base
│ ├── added_tokens.json
│ ├── config.json
│ ├── pytorch_model.bin
│ ├── special_tokens_map.json
│ ├── tokenizer.json
│ ├── tokenizer_config.json
│ └── vocab.txt
├── macbert-large
│ ├── added_tokens.json
│ ├── config.json
│ ├── pytorch_model.bin
│ ├── special_tokens_map.json
│ ├── tokenizer.json
│ ├── tokenizer_config.json
│ └── vocab.txt
├── mixed_corpus_bert_base_model.bin
├── mixed_corpus_bert_large_model.bin
└── nezha-cn-base
├── bert_config.json
├── pytorch_model.bin
└── vocab.txt
```
* 预训练模型[md5](user_data/md5.txt)## 环境准备
* torch==1.7.0
* transformers=4.3.0.rc1
* simpletransformers==0.51.15
* TensorRT-7.2.1.6## 端到端训练脚本
```
cd code
bash ./run.sh
```
## 不同版本方案* 方案一: 预训练(多个模型) + finetune-分类(多个模型) + 生成软标签 + 训练regression模型(软标签,单模型)
```
cd code
bash ./train.sh
```
初赛使用的该方案,初赛成绩为0.9220;* 方案二: 预训练(多个模型) + 加载预训练参数,初始化一个大模型 + 训练分类模型(单模型)
```
pipeline/pipeline_b.py
```
训练一个144层模型(6 * 12 + 24 * 3);
该模型单模型在复赛A榜成绩0.9561;推理平均时间15ms;* 方案三: 预训练(多个模型) + finetune-分类(多个模型) + 平均融合
```
pipeline/pipeline_d.py
```
融合6个bert-base + 3个bert-large模型;
该模型在复赛A榜没测试,B榜成绩0.9593;推理平均时间15ms;