Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/nilboy/tensorflow-yolo

tensorflow implementation of 'YOLO : Real-Time Object Detection'(train and test)
https://github.com/nilboy/tensorflow-yolo

tensorflow tensorflow-yolo yolo

Last synced: about 2 months ago
JSON representation

tensorflow implementation of 'YOLO : Real-Time Object Detection'(train and test)

Awesome Lists containing this project

README

        

# tensorflow-yolo

### Require
tensorflow-1.0
### download pretrained model

yolo_tiny: https://drive.google.com/file/d/0B-yiAeTLLamRekxqVE01Yi1RRlk/view?usp=sharing

```
mv yolo_tiny.ckpt models/pretrain/
```

### Train

#### Train on pascal-voc2007 data

##### Download pascal-Voc2007 data

1. Download the training, validation and test data

```
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
```

2. Extract all of these tars into one directory named `VOCdevkit`

```
tar xvf VOCtrainval_06-Nov-2007.tar
tar xvf VOCtest_06-Nov-2007.tar
```

3. It should have this basic structure

```
$VOCdevkit/ # development kit
$VOCdevkit/VOCcode/ # VOC utility code
$VOCdevkit/VOC2007 # image sets, annotations, etc.
# ... and several other directories ...
```

4. Create symlinks for the PASCAL VOC dataset

```
cd $YOLO_ROOT/data
ln -s $VOCdevkit VOCdevkit2007
```
Using symlinks is a good idea because you will likely want to share the same PASCAL dataset installation between multiple projects.

#### convert the Pascal-voc data to text_record file

```
python tools/preprocess_pascal_voc.py
```
#### train
```
python tools/train.py -c conf/train.cfg
```
#### Train your customer data

1. transform your training data to text_record file(the format reference to pascal_voc)

2. write your own train-configure file

3. train (python tools/train.py -c $your_configure_file)

### test demo

```
python demo.py
```