Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nisaaragharia/advanced_rag
Advanced Retrieval-Augmented Generation (RAG) through practical notebooks, using the power of the Langchain, OpenAI GPTs ,META LLAMA3 ,Agents.
https://github.com/nisaaragharia/advanced_rag
agent agents ai chatgpt genai langchain llama3 llm machine-learning nlp openai rag retrival-augmented vectordb
Last synced: about 1 month ago
JSON representation
Advanced Retrieval-Augmented Generation (RAG) through practical notebooks, using the power of the Langchain, OpenAI GPTs ,META LLAMA3 ,Agents.
- Host: GitHub
- URL: https://github.com/nisaaragharia/advanced_rag
- Owner: NisaarAgharia
- Created: 2024-03-28T11:13:49.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-04-26T07:54:32.000Z (7 months ago)
- Last Synced: 2024-10-10T06:04:01.595Z (about 1 month ago)
- Topics: agent, agents, ai, chatgpt, genai, langchain, llama3, llm, machine-learning, nlp, openai, rag, retrival-augmented, vectordb
- Language: Jupyter Notebook
- Homepage:
- Size: 3.98 MB
- Stars: 205
- Watchers: 3
- Forks: 37
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
Dive into the world of advanced language understanding with `Advanced_RAG`. These Python notebooks offer a guided tour of Retrieval-Augmented Generation (RAG) using the Langchain framework, perfect for enhancing Large Language Models (LLMs) with rich, contextual knowledge.
## Architecture Flows
### Basic RAG :
Understand the journey of a query through RAG, from user input to the final generated response, all depicted in a clear, visual flow.
![RAG_User_Flow](https://github.com/NisaarAgharia/RAG_From_Scratch/assets/22457544/dc390fc3-5c41-4c8e-b16e-268606a8f4ed)### Advanced RAG Techniques :
Explore the intricate components that make up an advanced RAG system, from query construction to generation.
![Advanced RAG Components](https://github.com/NisaarAgharia/RAG_From_Scratch/assets/22457544/281e8c66-a33f-485f-ad75-e8d450ccba98)### 02. Multi Query Retriever :
Get to grips with the Multi Query Retriever structure, which enhances the retrieval process by selecting the best responses from multiple sources.
![MQR](https://github.com/NisaarAgharia/RAG_From_Scratch/assets/22457544/5c0db3f0-59e4-4278-af6f-4120a3bb5637)### 06. Self-Reflection-RAG :
![self-Rag](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/2e58751b-c986-4137-8f85-9294301c3f79)### 07. Agentic RAG :
![download](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/4258e17e-7dfa-48da-a5b5-753b3de5d1bc)### 08. Adaptive Agentic RAG :
![adaptive_rag_agent](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/283a734d-bd00-4431-8982-fc5e6ce8f15c)### 09. Corrective Agentic RAG :
![correctiveRAG](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/68968fa8-0b0e-46ca-a80e-b30645b1e31b)### 10. LLAMA 3 Agentic RAG Local:
![LLAMA3_AGent](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/a9408eea-814f-416e-a8f6-aec361410719)## Notebooks Overview
Below is a detailed overview of each notebook present in this repository:- **01_Introduction_To_RAG.ipynb**
- _Basic process of building RAG app(s)_
- **02_Query_Transformations.ipynb**
- _Techniques for Modifying Questions for Retrieval_
- **03_Routing_To_Datasources.ipynb**
- _Create Routing Mechanism for LLM to select the correct data Source_
- **04_Indexing_To_VectorDBs.ipynb**
- _Various Indexing Methods in the Vector DB_
- **05_Retrieval_Mechanisms.ipynb**
- _Reranking, RaG Fusion, and other Techniques_
- **06_Self_Reflection_Rag.ipynb**
- _RAG that has self-reflection / self-grading on retrieved documents and generations._
- **07_Agentic_Rag.ipynb**
- _RAG that has agentic Flow on retrieved documents and generations._
- **08_Adaptive_Agentic_Rag.ipynb**
- _RAG that has adaptive agentic Flow._
- **09_Corrective_Agentic_Rag.ipynb**
- _RAG that has corrective agentic Flow on retrieved documents and generations._
- **10_LLAMA_3_Rag_Agent_Local.ipynb**
- _LLAMA 3 8B Agent Rag that works Locally._Enhance your LLMs with the powerful combination of RAG and Langchain for more informed and accurate natural language generation.