Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/nisaaragharia/advanced_rag

Advanced Retrieval-Augmented Generation (RAG) through practical notebooks, using the power of the Langchain, OpenAI GPTs ,META LLAMA3 ,Agents.
https://github.com/nisaaragharia/advanced_rag

agent agents ai chatgpt genai langchain llama3 llm machine-learning nlp openai rag retrival-augmented vectordb

Last synced: about 1 month ago
JSON representation

Advanced Retrieval-Augmented Generation (RAG) through practical notebooks, using the power of the Langchain, OpenAI GPTs ,META LLAMA3 ,Agents.

Awesome Lists containing this project

README

        

Dive into the world of advanced language understanding with `Advanced_RAG`. These Python notebooks offer a guided tour of Retrieval-Augmented Generation (RAG) using the Langchain framework, perfect for enhancing Large Language Models (LLMs) with rich, contextual knowledge.

## Architecture Flows
### Basic RAG :
Understand the journey of a query through RAG, from user input to the final generated response, all depicted in a clear, visual flow.
![RAG_User_Flow](https://github.com/NisaarAgharia/RAG_From_Scratch/assets/22457544/dc390fc3-5c41-4c8e-b16e-268606a8f4ed)

### Advanced RAG Techniques :
Explore the intricate components that make up an advanced RAG system, from query construction to generation.
![Advanced RAG Components](https://github.com/NisaarAgharia/RAG_From_Scratch/assets/22457544/281e8c66-a33f-485f-ad75-e8d450ccba98)

### 02. Multi Query Retriever :
Get to grips with the Multi Query Retriever structure, which enhances the retrieval process by selecting the best responses from multiple sources.
![MQR](https://github.com/NisaarAgharia/RAG_From_Scratch/assets/22457544/5c0db3f0-59e4-4278-af6f-4120a3bb5637)

### 06. Self-Reflection-RAG :
![self-Rag](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/2e58751b-c986-4137-8f85-9294301c3f79)

### 07. Agentic RAG :
![download](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/4258e17e-7dfa-48da-a5b5-753b3de5d1bc)

### 08. Adaptive Agentic RAG :
![adaptive_rag_agent](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/283a734d-bd00-4431-8982-fc5e6ce8f15c)

### 09. Corrective Agentic RAG :
![correctiveRAG](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/68968fa8-0b0e-46ca-a80e-b30645b1e31b)

### 10. LLAMA 3 Agentic RAG Local:
![LLAMA3_AGent](https://github.com/NisaarAgharia/Advanced_RAG/assets/22457544/a9408eea-814f-416e-a8f6-aec361410719)

## Notebooks Overview
Below is a detailed overview of each notebook present in this repository:

- **01_Introduction_To_RAG.ipynb**
- _Basic process of building RAG app(s)_
- **02_Query_Transformations.ipynb**
- _Techniques for Modifying Questions for Retrieval_
- **03_Routing_To_Datasources.ipynb**
- _Create Routing Mechanism for LLM to select the correct data Source_
- **04_Indexing_To_VectorDBs.ipynb**
- _Various Indexing Methods in the Vector DB_
- **05_Retrieval_Mechanisms.ipynb**
- _Reranking, RaG Fusion, and other Techniques_
- **06_Self_Reflection_Rag.ipynb**
- _RAG that has self-reflection / self-grading on retrieved documents and generations._
- **07_Agentic_Rag.ipynb**
- _RAG that has agentic Flow on retrieved documents and generations._
- **08_Adaptive_Agentic_Rag.ipynb**
- _RAG that has adaptive agentic Flow._
- **09_Corrective_Agentic_Rag.ipynb**
- _RAG that has corrective agentic Flow on retrieved documents and generations._
- **10_LLAMA_3_Rag_Agent_Local.ipynb**
- _LLAMA 3 8B Agent Rag that works Locally._

Enhance your LLMs with the powerful combination of RAG and Langchain for more informed and accurate natural language generation.