Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nishiwen1214/superglue-bert4keras
基于bert4keras的SuperGLUE基准代码
https://github.com/nishiwen1214/superglue-bert4keras
baseline bert bert4keras keras nlp nlu superglue
Last synced: about 9 hours ago
JSON representation
基于bert4keras的SuperGLUE基准代码
- Host: GitHub
- URL: https://github.com/nishiwen1214/superglue-bert4keras
- Owner: nishiwen1214
- License: apache-2.0
- Created: 2022-01-17T06:58:02.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-06-25T11:15:08.000Z (over 2 years ago)
- Last Synced: 2023-03-09T05:27:15.033Z (over 1 year ago)
- Topics: baseline, bert, bert4keras, keras, nlp, nlu, superglue
- Language: Python
- Homepage:
- Size: 164 KB
- Stars: 12
- Watchers: 1
- Forks: 1
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# 基于bert4keras的SuperGLUE基准代码
### 集齐基于bert4keras的 CLUE,GLUE,SuperGLUE 三大自然语言理解榜单的基准代码
- [CLUE基准代码 (中文)](https://github.com/bojone/CLUE-bert4keras)
- [GLUE基准代码 (英文)](https://github.com/nishiwen1214/GLUE-bert4keras)
- [SuperGLUE基准代码 (英文)](https://github.com/nishiwen1214/SuperGLUE-bert4keras)### 欢迎star⭐️和提问❓~
### 实验结果:
- test set:
### 使用
- 下载[SuperGLUE数据集](https://super.gluebenchmark.com/)和bert预训练的权重(这里使用的是[Google原版bert](https://github.com/google-research/bert))到指定文件夹;
- 例如:训练BoolQ,直接运行 `python BoolQ.py`。### 环境
- 软件:bert4keras>=0.10.8, tensorflow = 1.15.0, keras = 2.3.1;
- 硬件:结果是用 RTX 3090 (24G),注意3090显卡不支持Google的tf 1.x系列,需使用Nvidia的tf.15。安装教程可参考:https://www.bilibili.com/read/cv9162965/### 更新
- 2022-1-18 上传test set结果,只剩ReCoRD的结果还没跑出来(跑太慢了。。。)