An open API service indexing awesome lists of open source software.

https://github.com/nishkarshraj/100daysofmlcode

My journey to learn and grow in the domain of Machine Learning and Artificial Intelligence by performing the #100DaysofMLCode Challenge. Now supported by bright developers adding their learnings :+1:
https://github.com/nishkarshraj/100daysofmlcode

100daysofcode 100daysofmlcode artificial-intelligence artificial-neural-networks big-data classification classification-algorithm deep-learning generative-ai hacktoberfest linear-algebra linear-regression llm machine-learning neural-networks polynomial-regression python regression regression-models scikitlearn-machine-learning

Last synced: 22 days ago
JSON representation

My journey to learn and grow in the domain of Machine Learning and Artificial Intelligence by performing the #100DaysofMLCode Challenge. Now supported by bright developers adding their learnings :+1:

Awesome Lists containing this project

README

        

![Cover Image](docs/cover.png)

#100DaysofMLCode

## Table of Contents

[**1. Data Pre-processing**](2_Data_Preprocessing/README.md)
* [Importing Libraries](2_Data_Preprocessing/README.md#importing_libraries)
* [Importing Data sets](2_Data_Preprocessing/README.md#importing_datasets)
* [Handling the missing data values](2_Data_Preprocessing/README.md#handling_veracity)
* [Encoding categorical data](2_Data_Preprocessing/README.md#encoding_cat_data)
* [Split Data into Train data and Test data](2_Data_Preprocessing/README.md#split_data)
* [Feature Scaling](2_Data_Preprocessing/README.md#feature_scaling)

[**2. Regression**](3_Regression/README.md)
* [Simple Linear Regression](3_Regression/Simple_Linear_Regression)
* [Multi Linear Regression](3_Regression/Multi_Linear_Regression)
* [Polynomial Regression](3_Regression/Polynomial_Regression)
* [Support Vector Regression](3_Regression/Support_Vector_Regression)
* [Decision Tree Regression](3_Regression/Decision_Tree_Regression)
* [Random Forest Regression](3_Regression/Random_Forest_Regression)

[**3. Classification**](4_Classification/README.md)
* [Logistic Regression](4_Classification/Logistic_Regression)
* [K Nearest Neighbors Classification](4_Classification/K_Nearest_Neighbors)
* [Support Vector Machine](4_Classification/Support_Vector_Machine)
* [Kernel SVM](4_Classification/Kernel-SVM)
* [Naive Bayes](4_Classification/Naive_Bayes)
* [Decision Tree Classification](4_Classification/Decision_Tree_Classification)
* [Random Forest Classification](4_Classification/Random_Forest_Classification)

[**4. Clustering**](5_Clustering/README.md)
* [K-Means Clustering](5_Clustering/K_Means)
* [Hierarchical Clustering](5_Clustering/Hierarchical_Clustering)

[**5. Association Rule**](6_Association_Rule/README.md)
* [Apriori](6_Association_Rule/Apriori)
* [Eclat](6_Association_Rule/Eclat)

[**6. Reinforcement Learning**](7_Reinforcement_Learning/README.md)
* [Upper Confidence Bounds](7_Reinforcement_Learning\Upper_confidence_Bound)
* [Thompson Sampling](7_Reinforcement_Learning/Thompson_Sampling)

[**7. Natural Language Processing** ](8_Natural_Language_Processing)
* [AWS Comprehend](8_Natural_Language_Processing)

[**8. Deep Learning**](9_Deep_Learning/README.md)
* [Artificial Neural Networks (ANN)](9_Deep_Learning/Artificial_Neural_Networks)
* [2. Convolutional Neural Networks (CNN)](9_Deep_Learning/Convolutional_Neural_Networks)


[**9. Dimensionality Reduction**](10_Dimensionality_Reduction/README.md)
* [Principal Component Analysis](10_Dimensionality_Reduction/Principal_Component_Analysis)
* [Linear Discriminant Analysis](10_Dimensionality_Reduction/Linear_Discriminant_Analysis)
* [Kernel PCA](10_Dimensionality_Reduction/Kernel_PCA)

[**10. Model Selection**](11_Model_Selection/README.md)
* [Grid Search](11_Model_Selection/Model_Selection)
* [K-fold Cross Validation](11_Model_Selection/Model_Selection)
* [XGBoost](11_Model_Selection/XGBoost)

**11. Data Visualization**
* Matplotlib library in Python
* Tableau
* Power BI
* Grafana

## Log of my Day-to-Day Activities

Track my daily activities [here](docs/100Days_Log.md)

## How to Contribute

This is an open project and contribution in all forms are welcomed.
Please follow these [Contribution Guidelines](docs/CONTRIBUTING.md)

## Code of Conduct

Adhere to the GitHub specified community [code](docs/CODE_OF_CONDUCT.md).

## License

Check the official MIT License [here](LICENSE).

## 👥 Contributors

- **[@NishkarshRaj](https://github.com/NishkarshRaj)**

- **[@neha-shah99](https://github.com/neha-shah99)**

- **[@manavkapadnis](https://github.com/manavkapadnis)**

- **[@UdayKiranPadhy](https://github.com/UdayKiranPadhy)**

- **[@codingcosmonaut](https://github.com/codingcosmonaut)**

- **[@ekdnam](https://github.com/ekdnam)**

- **[@anushka0301](https://github.com/anushka0301)**

- **[@JeremiahKamama](https://github.com/JeremiahKamama)**

- **[@aenyne](https://github.com/aenyne)**

- **[@pragyakapoor](https://github.com/pragyakapoor)**