Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/nixtla/statsforecast

Lightning ⚡️ fast forecasting with statistical and econometric models.
https://github.com/nixtla/statsforecast

arima automl baselines data-science econometrics ets exponential-smoothing fbprophet forecasting machine-learning mstl naive neuralprophet predictions prophet python seasonal-naive statistics theta time-series

Last synced: 1 day ago
JSON representation

Lightning ⚡️ fast forecasting with statistical and econometric models.

Awesome Lists containing this project

README

        

# Nixtla   [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Statistical%20Forecasting%20Algorithms%20by%20Nixtla%20&url=https://github.com/Nixtla/statsforecast&via=nixtlainc&hashtags=StatisticalModels,TimeSeries,Forecasting)  [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlacommunity/shared_invite/zt-1pmhan9j5-F54XR20edHk0UtYAPcW4KQ)

[![All Contributors](https://img.shields.io/badge/all_contributors-32-orange.svg?style=flat-square)](#contributors-)



Statistical ⚡️ Forecast


Lightning fast forecasting with statistical and econometric models



[![CI](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml/badge.svg?branch=main)](https://github.com/Nixtla/statsforecast/actions/workflows/ci.yaml)
[![Python](https://img.shields.io/pypi/pyversions/statsforecast)](https://pypi.org/project/statsforecast/)
[![PyPi](https://img.shields.io/pypi/v/statsforecast?color=blue)](https://pypi.org/project/statsforecast/)
[![conda-nixtla](https://img.shields.io/conda/vn/conda-forge/statsforecast?color=seagreen&label=conda)](https://anaconda.org/conda-forge/statsforecast)
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://github.com/Nixtla/statsforecast/blob/main/LICENSE)
[![docs](https://img.shields.io/website-up-down-green-red/http/nixtla.github.io/statsforecast.svg?label=docs)](https://nixtla.github.io/statsforecast/)
[![Downloads](https://pepy.tech/badge/statsforecast)](https://pepy.tech/project/statsforecast)

**StatsForecast** offers a collection of widely used univariate time series forecasting models, including automatic `ARIMA`, `ETS`, `CES`, and `Theta` modeling optimized for high performance using `numba`. It also includes a large battery of benchmarking models.

## Installation

You can install `StatsForecast` with:

```python
pip install statsforecast
```

or

```python
conda install -c conda-forge statsforecast
```

Vist our [Installation Guide](https://nixtla.github.io/statsforecast/docs/getting-started/installation.html) for further instructions.

## Quick Start

**Minimal Example**

```python
from statsforecast import StatsForecast
from statsforecast.models import AutoARIMA
from statsforecast.utils import AirPassengersDF

df = AirPassengersDF
sf = StatsForecast(
models=[AutoARIMA(season_length=12)],
freq='ME',
)
sf.fit(df)
sf.predict(h=12, level=[95])
```

**Get Started with this [quick guide](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_short.html).**

**Follow this [end-to-end walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html) for best practices.**

## Why?

Current Python alternatives for statistical models are slow, inaccurate and don't scale well. So we created a library that can be used to forecast in production environments or as benchmarks. `StatsForecast` includes an extensive battery of models that can efficiently fit millions of time series.

## Features

* Fastest and most accurate implementations of `AutoARIMA`, `AutoETS`, `AutoCES`, `MSTL` and `Theta` in Python.
* Out-of-the-box compatibility with Spark, Dask, and Ray.
* Probabilistic Forecasting and Confidence Intervals.
* Support for exogenous Variables and static covariates.
* Anomaly Detection.
* Familiar sklearn syntax: `.fit` and `.predict`.

## Highlights

* Inclusion of `exogenous variables` and `prediction intervals` for ARIMA.
* 20x [faster](./experiments/arima/) than `pmdarima`.
* 1.5x faster than `R`.
* 500x faster than `Prophet`.
* 4x [faster](./experiments/ets/) than `statsmodels`.
* Compiled to high performance machine code through [`numba`](https://numba.pydata.org/).
* 1,000,000 series in [30 min](https://github.com/Nixtla/statsforecast/tree/main/experiments/ray) with [ray](https://github.com/ray-project/ray).
* Replace FB-Prophet in two lines of code and gain speed and accuracy. Check the experiments [here](https://github.com/Nixtla/statsforecast/tree/main/experiments/arima_prophet_adapter).
* Fit 10 benchmark models on **1,000,000** series in [under **5 min**](./experiments/benchmarks_at_scale/).

Missing something? Please open an issue or write us in [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlaworkspace/shared_invite/zt-135dssye9-fWTzMpv2WBthq8NK0Yvu6A)

## Examples and Guides

📚 [End to End Walkthrough](https://nixtla.github.io/statsforecast/docs/getting-started/getting_started_complete.html): Model training, evaluation and selection for multiple time series

🔎 [Anomaly Detection](https://nixtla.github.io/statsforecast/docs/tutorials/anomalydetection.html): detect anomalies for time series using in-sample prediction intervals.

👩‍🔬 [Cross Validation](https://nixtla.github.io/statsforecast/docs/tutorials/crossvalidation.html): robust model’s performance evaluation.

❄️ [Multiple Seasonalities](https://nixtla.github.io/statsforecast/docs/tutorials/multipleseasonalities.html): how to forecast data with multiple seasonalities using an MSTL.

🔌 [Predict Demand Peaks](https://nixtla.github.io/statsforecast/docs/tutorials/electricitypeakforecasting.html): electricity load forecasting for detecting daily peaks and reducing electric bills.

📈 [Intermittent Demand](https://nixtla.github.io/statsforecast/docs/tutorials/intermittentdata.html): forecast series with very few non-zero observations.

🌡️ [Exogenous Regressors](https://nixtla.github.io/statsforecast/docs/how-to-guides/exogenous.html): like weather or prices

## Models

### Automatic Forecasting
Automatic forecasting tools search for the best parameters and select the best possible model for a group of time series. These tools are useful for large collections of univariate time series.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[AutoARIMA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoarima)|✅|✅|✅|✅|✅|
|[AutoETS](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoets)|✅|✅|✅|✅||
|[AutoCES](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoces)|✅|✅|✅|✅||
|[AutoTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autotheta)|✅|✅|✅|✅||
|[AutoMFLES](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#automfles)|✅|✅|✅|✅|✅|
|[AutoTBATS](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autotbats)|✅|✅|✅|✅||

### ARIMA Family
These models exploit the existing autocorrelations in the time series.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[ARIMA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#arima)|✅|✅|✅|✅|✅|
|[AutoRegressive](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#autoregressive)|✅|✅|✅|✅|✅|

### Theta Family
Fit two theta lines to a deseasonalized time series, using different techniques to obtain and combine the two theta lines to produce the final forecasts.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[Theta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#theta)|✅|✅|✅|✅||
|[OptimizedTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#optimizedtheta)|✅|✅|✅|✅||
|[DynamicTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#dynamictheta)|✅|✅|✅|✅||
|[DynamicOptimizedTheta](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#dynamicoptimizedtheta)|✅|✅|✅|✅||

### Multiple Seasonalities
Suited for signals with more than one clear seasonality. Useful for low-frequency data like electricity and logs.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[MSTL](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#mstl)|✅|✅|✅|✅|If trend forecaster supports|
|[MFLES](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#mfles)|✅|✅|✅|✅|✅|
|[TBATS](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#tbats)|✅|✅|✅|✅||

### GARCH and ARCH Models
Suited for modeling time series that exhibit non-constant volatility over time. The ARCH model is a particular case of GARCH.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[GARCH](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#garch)|✅|✅|✅|✅||
|[ARCH](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#arch)|✅|✅|✅|✅||

### Baseline Models
Classical models for establishing baseline.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[HistoricAverage](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#historicaverage)|✅|✅|✅|✅||
|[Naive](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#naive)|✅|✅|✅|✅||
|[RandomWalkWithDrift](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#randomwalkwithdrift)|✅|✅|✅|✅||
|[SeasonalNaive](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalnaive)|✅|✅|✅|✅||
|[WindowAverage](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#windowaverage)|✅|||||
|[SeasonalWindowAverage](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalwindowaverage)|✅|||||

### Exponential Smoothing
Uses a weighted average of all past observations where the weights decrease exponentially into the past. Suitable for data with clear trend and/or seasonality. Use the `SimpleExponential` family for data with no clear trend or seasonality.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[SimpleExponentialSmoothing](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#simpleexponentialsmoothing)|✅|||||
|[SimpleExponentialSmoothingOptimized](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#simpleexponentialsmoothingoptimized)|✅|||||
|[SeasonalExponentialSmoothing](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalexponentialsmoothing)|✅|||||
|[SeasonalExponentialSmoothingOptimized](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#seasonalexponentialsmoothingoptimized)|✅|||||
|[Holt](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#holt)|✅|✅|✅|✅||
|[HoltWinters](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#holtwinters)|✅|✅|✅|✅||

### Sparse or Inttermitent
Suited for series with very few non-zero observations

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[ADIDA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#adida)|✅||✅|✅||
|[CrostonClassic](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#crostonclassic)|✅||✅|✅||
|[CrostonOptimized](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#crostonoptimized)|✅||✅|✅||
|[CrostonSBA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#crostonsba)|✅||✅|✅||
|[IMAPA](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#imapa)|✅||✅|✅||
|[TSB](https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#tsb)|✅||✅|✅||

## 🔨 How to contribute
See [CONTRIBUTING.md](https://github.com/Nixtla/statsforecast/blob/main/CONTRIBUTING.md).

## Citing

```bibtex
@misc{garza2022statsforecast,
author={Azul Garza, Max Mergenthaler Canseco, Cristian Challú, Kin G. Olivares},
title = {{StatsForecast}: Lightning fast forecasting with statistical and econometric models},
year={2022},
howpublished={{PyCon} Salt Lake City, Utah, US 2022},
url={https://github.com/Nixtla/statsforecast}
}
```

## Contributors ✨

Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):



azul
azul

💻 🚧
José Morales
José Morales

💻 🚧
Sugato Ray
Sugato Ray

💻
Jeff Tackes
Jeff Tackes

🐛
darinkist
darinkist

🤔
Alec Helyar
Alec Helyar

💬
Dave Hirschfeld
Dave Hirschfeld

💬


mergenthaler
mergenthaler

💻
Kin
Kin

💻
Yasslight90
Yasslight90

🤔
asinig
asinig

🤔
Philip Gillißen
Philip Gillißen

💻
Sebastian Hagn
Sebastian Hagn

🐛 📖
Han Wang
Han Wang

💻


Ben Jeffrey
Ben Jeffrey

🐛
Beliavsky
Beliavsky

📖
Mariana Menchero García
Mariana Menchero García

💻
Nikhil Gupta
Nikhil Gupta

🐛
JD
JD

🐛
josh attenberg
josh attenberg

💻
JeroenPeterBos
JeroenPeterBos

💻


Jeroen Van Der Donckt
Jeroen Van Der Donckt

💻
Roymprog
Roymprog

📖
Nelson Cárdenas Bolaño
Nelson Cárdenas Bolaño

📖
Kyle Schmaus
Kyle Schmaus

💻
Akmal Soliev
Akmal Soliev

💻
Nick To
Nick To

💻
Kevin Kho
Kevin Kho

💻


Yiben Huang
Yiben Huang

📖
Andrew Gross
Andrew Gross

📖
taniishkaaa
taniishkaaa

📖
Manuel Calzolari
Manuel Calzolari

💻

This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!