Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/njanakiev/folderstats
Python module that collects detailed statistics from a folder structure
https://github.com/njanakiev/folderstats
data-analysis filesystem pandas python statistics
Last synced: about 1 month ago
JSON representation
Python module that collects detailed statistics from a folder structure
- Host: GitHub
- URL: https://github.com/njanakiev/folderstats
- Owner: njanakiev
- License: mit
- Created: 2018-12-22T13:49:19.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2022-11-22T19:49:34.000Z (about 2 years ago)
- Last Synced: 2024-12-07T00:09:55.449Z (about 2 months ago)
- Topics: data-analysis, filesystem, pandas, python, statistics
- Language: Python
- Homepage:
- Size: 527 KB
- Stars: 70
- Watchers: 6
- Forks: 27
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
# folderstats
[![](https://img.shields.io/pypi/v/folderstats.svg)](https://pypi.python.org/pypi/folderstats)
This is a python module and command-line interface that creates statistics from a folder structure. It returns a [Pandas](http://pandas.pydata.org/) dataframe from the folders and files from a selected folder.
![Folder Structure Graph](folder_structure.png)
# Installation
```bash
pip install folderstats
```# Usage
To get statistics of a folder structure as a Pandas dataframe in Python you can type:
```python
import folderstats
df = folderstats.folderstats(
'.', hash_name='md5',
exclude=["tests", "venv", "__pycache__"],
ignore_hidden=True)
df
```| path | name | extension | size | atime | mtime | ctime | folder | num_files | depth | uid | md5 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| ./folder_structure.png | folder_structure | png | 525239 | 2022-01-10 16:08:32 | 2020-11-22 19:38:03 | 2020-11-22 19:38:03 | False | | 0 | 1000 | a3cac43de8dd5fc33d7bede1bb1849de |
| ./requirements.txt | requirements | txt | 14 | 2022-01-10 18:37:52 | 2022-01-08 17:29:52 | 2022-01-08 17:29:52 | False | | 0 | 1000 | d8e272adf08f0389ef08be879d851df8 |
| ./requirements-dev.txt | requirements-dev | txt | 33 | 2022-01-10 14:14:50 | 2022-01-08 17:54:50 | 2022-01-08 17:54:50 | False | | 0 | 1000 | 42c7e7d9bc4620c2c7a12e6bbf8120bb |
| ./README.md | README | md | 3909 | 2022-01-10 18:37:52 | 2022-01-10 18:37:34 | 2022-01-10 18:37:34 | False | | 0 | 1000 | 4339e186a35d77689419e996ee3998dc |
| ./folderstats/\_\_main\_\_.py | \_\_main\_\_ | py | 3313 | 2022-01-10 18:06:03 | 2022-01-10 18:05:58 | 2022-01-10 18:05:58 | False | | 1 | 1000 | 62652872e08be115495aaf6e9f3a239a |
| ./folderstats/\_\_init\_\_.py | \_\_init\_\_ | py | 4556 | 2022-01-10 18:05:12 | 2022-01-10 18:04:56 | 2022-01-10 18:04:56 | False | | 1 | 1000 | f0c8eb98713ddec7a4812a1471384296 |
| ./folderstats | folderstats | | 7869 | 2022-01-10 17:10:15 | 2022-01-10 17:10:15 | 2022-01-10 17:10:15 | True | 2.0 | 1 | 1000 | |
| ./LICENSE | LICENSE | | 1073 | 2022-01-10 16:08:38 | 2020-11-22 19:38:03 | 2020-11-22 19:38:03 | False | | 0 | 1000 | 1232cbd9eced47e27816f69740ad479d |
| ./setup.py | setup | py | 1925 | 2022-01-10 16:29:32 | 2020-11-22 19:38:03 | 2020-11-22 19:38:03 | False | | 0 | 1000 | 01d39c60a0b41e6c928a6d3df6085d63 |
| . | . | | 544158 | 2022-01-10 18:37:00 | 2022-01-10 18:37:00 | 2022-01-10 18:37:00 | True | 8.0 | 0 | 1000 | |You can use the same functionality as a command-line interface which can generate files (CSV or JSON) or print the statistics directly into the command line:
```bash
folderstats . -c md5 -i -o stats.csv
```In order to see the other available arguments, type:
```bash
folderstats --help
``````
usage: folderstats [-h] [-o OUTPUT_FILEPATH] [-c HASH_NAME] [-a] [-m] [-i]
[-p] [-e EXCLUDE] [-f FILTER_EXTENSION] [-l] [-v]
folderpathCreates statistics from a folder structure
positional arguments:
folderpath input folder pathoptional arguments:
-h, --help show this help message and exit
-o OUTPUT_FILEPATH output filepath, CSV and JSON supported
-c HASH_NAME hash function for checksum
-a add absolute path column
-m store timestamps with microseconds
-i ignore hidden files and folders, Linux and Unix only
-p Add index and parent index
-e EXCLUDE, --exclude EXCLUDE
Exclude files and folders by name
-f FILTER_EXTENSION, --filter-extension FILTER_EXTENSION
Filter files by extension
-l, --follow-links Follow symbolic and hard links
-v verbose console output
```# Testing
Prepare dev environment with:
```bash
# Create virtual environement
python -m venv ./venv# Install dependencies
pip install -r requirements-dev.txt
pip install -r requirements.txt# Activate virtual environment
source venv/bin/activate
```To run unit tests, type:
```bash
pytest -v
```# License
This project is licensed under the MIT license. See the [LICENSE](LICENSE) for details.