An open API service indexing awesome lists of open source software.

https://github.com/njvisionpower/mtcnn-train-gluon

Implement MTCNN train pipeline with MXNet gluon
https://github.com/njvisionpower/mtcnn-train-gluon

face-detection gluon mxnet train-mtcnn

Last synced: 5 months ago
JSON representation

Implement MTCNN train pipeline with MXNet gluon

Awesome Lists containing this project

README

          

# mtcnn-train-gluon
Implement MTCNN train pipeline with MXNet gluon
## Introduction
This repo mainly implement MTCNN([Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks](https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf)) with mxnet gluon framework. I train a faster network instead of original version(only replace pooling with conv + stride), just design your own network and you may get faster and more accurate face detection model.






## How to run
```
python MTCNN.py
```
## How to train
The WIDER-FACE dataset is needed, download and unzip to datset directory such as:
```
---dataset
---WIDER_FACE
---wider_face_split
---WIDER_train
---WIDER_val
```
First train PNet, then RNet and finally ONet. The dataset process part reference at [repo](https://github.com/beichen2012/mtcnn-pytorch). Steps list:
**1. Generate PNet data**
```
python generate_data\Generate_PNet_data.py
```
**2. Train PNet**
```
python train_pnet.py
```
**3. Generate RNet data with trained PNet**
```
python generate_data\Generate_RNet_data.py
```
**4. Train RNet**
```
python train_rnet.py
```
**5. Generate ONet data with trained PNet and RNet**
```
python generate_data\Generate_ONet_data.py
```
**6. Train ONet**
```
python train_onet.py
```

## Demo















## Reference
[Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks](https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf)
[mtcnn-pytorch](https://github.com/beichen2012/mtcnn-pytorch)