Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nok/sklearn-porter
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.
https://github.com/nok/sklearn-porter
data-science machine-learning scikit-learn sklearn
Last synced: 3 days ago
JSON representation
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.
- Host: GitHub
- URL: https://github.com/nok/sklearn-porter
- Owner: nok
- License: bsd-3-clause
- Created: 2016-06-22T22:21:34.000Z (over 8 years ago)
- Default Branch: main
- Last Pushed: 2024-06-12T09:16:57.000Z (7 months ago)
- Last Synced: 2025-01-01T19:08:18.601Z (10 days ago)
- Topics: data-science, machine-learning, scikit-learn, sklearn
- Language: Python
- Homepage:
- Size: 2.91 MB
- Stars: 1,295
- Watchers: 32
- Forks: 169
- Open Issues: 45
-
Metadata Files:
- Readme: readme.md
- Changelog: changelog.md
- License: LICENSE
Awesome Lists containing this project
- awesome - sklearn-porter - Transpile trained scikit-learn estimators to C, Java, JavaScript and others. (Python)
- awesome-machine-learning-engineering - sklearn-porter - learn estimators to C, Java, JavaScript and others (Software / Serialising and transpiling models)
- awesome-list - sklearn-porter - Transpile trained scikit-learn estimators to C, Java, JavaScript and others. (Machine Learning Framework / General Purpose Framework)
- awesome-python-machine-learning-resources - GitHub - 50% open · ⏱️ 22.05.2022): (模型序列化和转换)
README
# sklearn-porter
[![Build Status stable branch](https://img.shields.io/travis/nok/sklearn-porter/stable.svg)](https://travis-ci.org/nok/sklearn-porter)
[![codecov](https://codecov.io/gh/nok/sklearn-porter/branch/stable/graph/badge.svg)](https://codecov.io/gh/nok/sklearn-porter)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/nok/sklearn-porter/release/1.0.0?filepath=examples/basics/index.pct.ipynb)
[![PyPI](https://img.shields.io/pypi/v/sklearn-porter.svg?color=blue)](https://pypi.python.org/pypi/sklearn-porter)
[![PyPI](https://img.shields.io/pypi/pyversions/sklearn-porter.svg)](https://pypi.python.org/pypi/sklearn-porter)
[![GitHub license](https://img.shields.io/pypi/l/sklearn-porter.svg?color=blue)](https://raw.githubusercontent.com/nok/sklearn-porter/main/LICENSE)Transpile trained [scikit-learn](https://github.com/scikit-learn/scikit-learn) estimators to C, Java, JavaScript and others.
It's recommended for limited embedded systems and critical applications where performance matters most.Navigation: [Estimators](#estimators) • [Installation](#installation) • [Usage](#usage) • [Known Issues](#known-issues) • [Development](#development) • [Citation](#citation) • [License](#license)
## Estimators
This table gives an overview over all supported combinations of estimators, programming languages and templates.
Programming language
C
Go
Java
JS
PHP
Ruby
svm.SVC
✓
×
✓
✓
×
✓
✓
×
✓
✓
×
✓
✓
×
✓
✓
×
svm.NuSVC
✓
×
✓
✓
×
✓
✓
×
✓
✓
×
✓
✓
×
✓
✓
×
svm.LinearSVC
✓
×
✓
✓
×
✓
✓
×
✓
✓
×
✓
✓
×
✓
✓
×
tree.DecisionTreeClassifier
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
ensemble.RandomForestClassifier
×
✓ᴾ
×
×
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
×
ensemble.ExtraTreesClassifier
×
✓ᴾ
×
×
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
✓ᴾ
×
ensemble.AdaBoostClassifier
×
✓ᴾ
×
✓ᴾ
✓ᴾ
✓ᴾ
neighbors.KNeighborsClassifier
✓ᴾ
✓ᴾ
×
✓ᴾ
✓ᴾ
×
✓ᴾ
✓ᴾ
×
✓ᴾ
✓ᴾ
×
✓ᴾ
✓ᴾ
×
naive_bayes.BernoulliNB
✓ᴾ
✓ᴾ
×
✓ᴾ
✓ᴾ
×
naive_bayes.GaussianNB
✓ᴾ
✓ᴾ
×
✓ᴾ
✓ᴾ
×
neural_network.MLPClassifier
✓ᴾ
✓ᴾ
×
✓ᴾ
✓ᴾ
×
neural_network.MLPRegressor
✓
✓
×
ᴀ
ᴇ
ᴄ
ᴀ
ᴇ
ᴄ
ᴀ
ᴇ
ᴄ
ᴀ
ᴇ
ᴄ
ᴀ
ᴇ
ᴄ
ᴀ
ᴇ
ᴄ
Template
✓ = support of `predict`, ᴾ = support of `predict_proba`, × = not supported or feasible
ᴀ = attached model data, ᴇ = exported model data (JSON), ᴄ = combined model data## Installation
Purpose
Version
Branch
Build
Command
Production
v0.7.4
stable
pip install sklearn-porter
Development
v1.0.0
main
pip install https://github.com/nok/sklearn-porter/zipball/main
In both environments the only prerequisite is `scikit-learn >= 0.17, <= 0.22`.
## Usage
### Binder
Try it out yourself by starting an interactive notebook with Binder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/nok/sklearn-porter/release/1.0.0?filepath=examples/basics/index.pct.ipynb)
### Basics
```python
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifierfrom sklearn_porter import port, save, make, test
# 1. Load data and train a dummy classifier:
X, y = load_iris(return_X_y=True)
clf = DecisionTreeClassifier()
clf.fit(X, y)# 2. Port or transpile an estimator:
output = port(clf, language='js', template='attached')
print(output)# 3. Save the ported estimator:
src_path, json_path = save(clf, language='js', template='exported', directory='/tmp')
print(src_path, json_path)# 4. Make predictions with the ported estimator:
y_classes, y_probas = make(clf, X[:10], language='js', template='exported')
print(y_classes, y_probas)# 5. Test always the ported estimator by making an integrity check:
score = test(clf, X[:10], language='js', template='exported')
print(score)
```### OOP
```python
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifierfrom sklearn_porter import Estimator
# 1. Load data and train a dummy classifier:
X, y = load_iris(return_X_y=True)
clf = DecisionTreeClassifier()
clf.fit(X, y)# 2. Port or transpile an estimator:
est = Estimator(clf, language='js', template='attached')
output = est.port()
print(output)# 3. Save the ported estimator:
est.template = 'exported'
src_path, json_path = est.save(directory='/tmp')
print(src_path, json_path)# 4. Make predictions with the ported estimator:
y_classes, y_probas = est.make(X[:10])
print(y_classes, y_probas)# 5. Test always the ported estimator by making an integrity check:
score = est.test(X[:10])
print(score)
```### CLI
In addition you can use the sklearn-porter on the command line. The command calls `porter` and is available after the installation.
```
porter {show,port,save} [-h] [-v]porter show [-l {c,go,java,js,php,ruby}] [-h]
porter port [-l {c,go,java,js,php,ruby}]
[-t {attached,combined,exported}]
[--skip-warnings] [-h]porter save [-l {c,go,java,js,php,ruby}]
[-t {attached,combined,exported}]
[--directory DIRECTORY]
[--skip-warnings] [-h]
```You can serialize an estimator and save it locally. For more details you can read the instructions to [model persistence](http://scikit-learn.org/stable/modules/model_persistence.html#persistence-example).
```python
from joblib import dumpdump(clf, 'estimator.joblib', compress=0)
```After that the estimator can be transpiled by using the subcommand `port`:
```bash
porter port estimator.joblib -l js -t attached > estimator.js
```For further processing you can pass the result to another applications, e.g. [UglifyJS](https://github.com/mishoo/UglifyJS2).
```bash
porter port estimator.joblib -l js -t attached | uglifyjs --compress -o estimator.min.js
```## Known Issues
- In some rare cases the regression tests of the support vector machine, [SVC](http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) and [NuSVC](http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html), fail since `scikit-learn>=0.22`. Because of that a `QualityWarning` will be raised which should reminds you to evaluate the result by using the `test` method.
## Development
### Aliases
The following commands are useful time savers in the daily development:
```bash
# Install a Python environment with `conda`:
make setup# Start a Jupyter notebook with examples:
make notebook# Start tests on the host or in a separate docker container:
make tests
make tests-docker# Lint the source code with `pylint`:
make lint# Generate notebooks with `jupytext`:
make examples# Deploy a new version with `twine`:
make deploy
```### Dependencies
The prerequisite is Python 3.6 which you can install with [conda](https://docs.conda.io/en/latest/miniconda.html):
```bash
conda env create -n sklearn-porter_3.6 python=3.6
conda activate sklearn-porter_3.6
```After that you have to install all required packages:
```bash
pip install --no-cache-dir -e ".[development,examples]"
```### Environment
All tests run against these combinations of [scikit-learn](https://github.com/scikit-learn/scikit-learn) and Python versions:
Python
3.5
3.6
3.7
3.8
scikit-learn
0.17
cython 0.27.3
cython 0.27.3
not supported
by scikit-learn
no support
by scikit-learn
numpy 1.9.3
numpy 1.9.3
scipy 0.16.0
scipy 0.16.0
0.18
cython 0.27.3
cython 0.27.3
not supported
by scikit-learn
not supported
by scikit-learn
numpy 1.9.3
numpy 1.9.3
scipy 0.16.0
scipy 0.16.0
0.19
cython 0.27.3
cython 0.27.3
not supported
by scikit-learn
not supported
by scikit-learn
numpy 1.14.5
numpy 1.14.5
scipy 1.1.0
scipy 1.1.0
0.20
cython 0.27.3
cython 0.27.3
cython 0.27.3
not supported
by joblib
numpy
numpy
numpy
scipy
scipy
scipy
0.21
cython
cython
cython
cython
numpy
numpy
numpy
numpy
scipy
scipy
scipy
scipy
0.22
cython
cython
cython
cython
numpy
numpy
numpy
numpy
scipy
scipy
scipy
scipy
For the regression tests we have to use specific compilers and interpreters:
Name
Source
Version
GCC
https://gcc.gnu.org
10.2.1
Go
https://golang.org
1.15.15
Java (OpenJDK)
https://openjdk.java.net
1.8.0
Node.js
https://nodejs.org
12.22.5
PHP
https://www.php.net
7.4.28
Ruby
https://www.ruby-lang.org
2.7.4
Please notice that in general you can use older compilers and interpreters with the generated source code. For instance you can use Java 1.6 to compile and run models.
### Logging
You can activate logging by changing the option `logging.level`.
```python
from sklearn_porter import optionsfrom logging import DEBUG
options['logging.level'] = DEBUG
```### Testing
You can run the unit and regression tests either on your local machine (host) or in a separate running Docker container.
```bash
pytest tests -v \
--cov=sklearn_porter \
--disable-warnings \
--numprocesses=auto \
-p no:doctest \
-o python_files="EstimatorTest.py" \
-o python_functions="test_*"
``````bash
docker build \
-t sklearn-porter \
--build-arg PYTHON_VER=${PYTHON_VER:-python=3.6} \
--build-arg SKLEARN_VER=${SKLEARN_VER:-scikit-learn=0.21} \
.docker run \
-v $(pwd):/home/abc/repo \
--detach \
--entrypoint=/bin/bash \
--name test \
-t sklearn-porterdocker exec -it test ./docker-entrypoint.sh \
pytest tests -v \
--cov=sklearn_porter \
--disable-warnings \
--numprocesses=auto \
-p no:doctest \
-o python_files="EstimatorTest.py" \
-o python_functions="test_*"docker rm -f $(docker ps --all --filter name=test -q)
```## Citation
If you use this implementation in you work, please add a reference/citation to the paper. You can use the following BibTeX entry:
```bibtex
@unpublished{sklearn_porter,
author = {Darius Morawiec},
title = {sklearn-porter},
note = {Transpile trained scikit-learn estimators to C, Java, JavaScript and others},
url = {https://github.com/nok/sklearn-porter}
}
```## License
The package is Open Source Software released under the [BSD 3-Clause](LICENSE) license.