Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nonsignificantp/whatsparser
A tool for parsing data from WhatsApp .txt chat files, intended for a rapid transition from .txt to pandas DataFrames
https://github.com/nonsignificantp/whatsparser
Last synced: 2 months ago
JSON representation
A tool for parsing data from WhatsApp .txt chat files, intended for a rapid transition from .txt to pandas DataFrames
- Host: GitHub
- URL: https://github.com/nonsignificantp/whatsparser
- Owner: nonsignificantp
- License: other
- Created: 2018-11-20T22:17:42.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2018-11-22T21:55:38.000Z (about 6 years ago)
- Last Synced: 2024-10-11T16:13:53.830Z (3 months ago)
- Language: Python
- Homepage:
- Size: 69.3 KB
- Stars: 6
- Watchers: 2
- Forks: 2
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## From WhatsApp chats to pandas dataframe made easy
[![Build Status](https://travis-ci.org/nonsignificantp/whatsparser.svg?branch=master)](https://travis-ci.org/nonsignificantp/whatsparser) [![PyPI version](https://badge.fury.io/py/WhatsParser.svg)](https://badge.fury.io/py/WhatsParser)
WhatsParser is a tool for parsing `.txt` chat files rendered by the WhatsApp messaging App. Is intended to make the shift from WhatsApp data to pandas dataframe as rapid as possible. Reading and parsing the `.txt` file is done like this:
```python
from whatsparser import WhatsParsermessages = WhatsParser('./chat.txt')
```Once the file has been parsed, all messages are stored as dictionaries with three keys: _datetime_, _author_ and _content_. Using indexing you can access individual data point:
```Python
len(messages) # Get how many messages there are
>> 3590messages[35] # Get a message
>> {'datetime': datetime.datetime(2017, 9, 15, 19, 10, 2),
'author': 'Agustin Rodriguez',
'content': 'Hi! this is a Whatsapp message'}
```The datetime key stores a datetime object, all the others have string as values.
### Pandas dataframe
Convert all messages into a pandas DataFrame so you can use your favorite tools for data analysis:
```Python
df = messages.to_dataframe() # Returns a pandas dataframe
```## Looping
WhatsParser also offer the possibility of iterate through the object using various functions. When iterating over `messages` a copy is made of all messages stored and iteration and changes occurs over this copy. It is possible to change the data store inside `messages` by assigning the results of the iteration to `messages.data`.
### Filter messages
```Python
def find_long_messages(message):
if len(message['content']) > 100:
return True
return Falsemessages.data = list(filter(find_long_messages, messages))
# Now, messages contains only those messages with a length greater than 100 characters.
```### List comprehension
```Python
from emoji import get_emoji_regexpdef remove_emojis(message):
message['content'] = get_emoji_regexp().sub(r'', message['content'])
return messagemessages.data = [remove_emojis(message) for message in messages]
# All messages got their emojis remove from the text
```### Map function
```Python
def remove_emojis(message):
message['content'] = get_emoji_regexp().sub(r'', message['content'])
return messagemessages.data = list(map(remove_emojis, messages))
```### For loop
Iterate over `messages.data` to make changes on the fly, if no just use `messages`.
```Python
# For changing data
for message in messages.data:
message['content'] = 'NEW CONTENT'# Without changing the data
for message in messages:
print(message['author'])```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.