Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/norskregnesentral/skchange

skchange provides sktime-compatible change detection and changepoint-based anomaly detection algorithms
https://github.com/norskregnesentral/skchange

anomaly-detection change-detection machine-learning statistics time-series-segmentation

Last synced: 3 months ago
JSON representation

skchange provides sktime-compatible change detection and changepoint-based anomaly detection algorithms

Awesome Lists containing this project

README

        

# [skchange](https://skchange.readthedocs.io/en/latest/)

[![codecov](https://codecov.io/gh/NorskRegnesentral/skchange/graph/badge.svg?token=QSS3AY45KY)](https://codecov.io/gh/NorskRegnesentral/skchange)
[![tests](https://github.com/NorskRegnesentral/skchange/actions/workflows/tests.yaml/badge.svg)](https://github.com/NorskRegnesentral/skchange/actions/workflows/tests.yaml)
[![docs](https://readthedocs.org/projects/skchange/badge/?version=latest)](https://skchange.readthedocs.io/en/latest/?badge=latest)
[![BSD 3-clause](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://github.com/sktime/sktime/blob/main/LICENSE)
[![!black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

`skchange` provides sktime-compatible change detection and changepoint-based anomaly detection algorithms.

Experimental but maturing.

## [Documentation](https://skchange.readthedocs.io/en/latest/)
Now available.

## Installation
```sh
pip install skchange
```
Requires Python >= 3.9, < 3.13.

## Quickstart

### Changepoint detection / time series segmentation
```python
from skchange.change_detectors.moscore import Moscore
from skchange.datasets.generate import generate_alternating_data

df = generate_alternating_data(n_segments=10, segment_length=50, mean=5, random_state=1)

detector = Moscore(bandwidth=10)
detector.fit_predict(df)
```
```python
0 49
1 99
2 149
3 199
4 249
5 299
6 349
7 399
8 449
Name: changepoint, dtype: int64
```

### Multivariate anomaly detection
```python
import numpy as np
from skchange.anomaly_detectors import Mvcapa
from skchange.datasets.generate import generate_anomalous_data

n = 300
anomalies = [(100, 119), (250, 299)]
means = [[8.0, 0.0, 0.0], [2.0, 3.0, 5.0]]
df = generate_anomalous_data(n, anomalies, means, random_state=3)

detector = Mvcapa()
detector.fit_predict(df)
```
```python
anomaly_interval anomaly_columns
0 [100, 119] [0]
1 [250, 299] [2, 1, 0]
```

## License

`skchange` is a free and open-source software licensed under the [BSD 3-clause license](https://github.com/NorskRegnesentral/skchange/blob/main/LICENSE).