Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/notai-tech/keras-craft
Extremely easy to use Text Detection module with CRAFT pre-trained model.
https://github.com/notai-tech/keras-craft
craft cv east keras scene-text-detection scene-text-recognition tensorflow text-detection text-recognition
Last synced: 3 days ago
JSON representation
Extremely easy to use Text Detection module with CRAFT pre-trained model.
- Host: GitHub
- URL: https://github.com/notai-tech/keras-craft
- Owner: notAI-tech
- License: mit
- Created: 2020-01-23T10:53:44.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2022-11-21T21:40:15.000Z (almost 2 years ago)
- Last Synced: 2023-03-10T10:44:07.938Z (over 1 year ago)
- Topics: craft, cv, east, keras, scene-text-detection, scene-text-recognition, tensorflow, text-detection, text-recognition
- Language: Python
- Homepage:
- Size: 24.4 KB
- Stars: 6
- Watchers: 2
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# keras-craft
Extremely easy to use Text Detection module with CRAFT pre-trained model.keras-craft aims to be production ready and supports features like batch inference (auto batching for images of different size) and tensorflow serving.
# Installation
```pip install git+https://github.com/notAI-tech/keras-craft``` (the entire library)
# Usage (craft_client)
```bash
docker run -p 8500:8500 bedapudi6788/keras-craft:generic-english
```
```python
import craft_clientimage_paths = [image_1, image_2, ..]
all_boxes = craft_client.detect(image_paths)# Visualization
for image_path, boxes in zip(image_paths):
image_with_boxes_path = craft_client.draw_boxes_on_image(image_path, boxes)
print(image_with_boxes_path)
```# Usage (keras_craft)
```python
import keras_craftdetector = keras_craft.Detector()
image_paths = [image_1, image_2, ..]
all_boxes = detector.detect(image_paths)# Visualization
for image_path, boxes in zip(image_paths):
image_with_boxes_path = keras_craft.draw_boxes_on_image(image_path, boxes)
print(image_with_boxes_path)
```# Example image_with_boxes
![](https://i.imgur.com/EtGvyCz.png)
# To Do:
1. Train different models for different use-cases. (various languages ..)
2. Experiment with smaller model(s)**Credit for the core keras model, generic-english checkpoint .. goes to [Fausto Morales](https://github.com/faustomorales/keras-ocr) and Clova.ai**