Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/novatecconsulting/novatec-avatar-generator
Novatec Avatar Generator idea for Hackathon 12.02.2021
https://github.com/novatecconsulting/novatec-avatar-generator
hackathon
Last synced: 2 months ago
JSON representation
Novatec Avatar Generator idea for Hackathon 12.02.2021
- Host: GitHub
- URL: https://github.com/novatecconsulting/novatec-avatar-generator
- Owner: NovatecConsulting
- Created: 2021-02-12T06:28:23.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2023-10-28T04:30:55.000Z (about 1 year ago)
- Last Synced: 2024-04-18T10:10:38.257Z (9 months ago)
- Topics: hackathon
- Language: JavaScript
- Homepage:
- Size: 1.87 MB
- Stars: 3
- Watchers: 12
- Forks: 2
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
This application was developed on 12.02.2021 as a submission for Hackathon Event. Contributors: Peter Kutschera, Minh Chi Nguyen.
# git submodules
This repository uses [git submodules](https://git-scm.com/book/en/v2/Git-Tools-Submodules). Please clone this repo with the `--recursive` flag to clone all submodules aswell. An alternative after cloning this repo is `git submodule init && git submodule update`.
# Novatec Avatar Generator Frontend
Angular (11.2) Frontend version for Novatec Avatar Generator offers simple file upload with click or drag and drop. It uses Material Angular and Tailwindcss for styling.
## Installation
`npm install && npm start` will serve at localhost:4200
# Novatec Avatar Generator Backend
The backend is based of U^2 Net, with a Flask server and Image Transformation built on top. The U^2 Net repo can be found at [U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection](https://github.com/NathanUA/U-2-Net) (Qin et al, Pattern Recognition 2020)
## Installation
- Download the pretrained model [u2net.pth](https://drive.google.com/file/d/1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ/view)
- Put the file inside the `backend/U-2-Net/saved_models/u2net/` folder, create u2net folder if needed
- Go back to backend folder, install dependencies with pip/pip3 (pip3 for linux/mac)
- Install `pip install -r requirements.txt`.
- Start the server with `python main.py`