Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nowosad/ogh_summer_school_2022
Links and slides from the OpenGeoHub summer school 2022
https://github.com/nowosad/ogh_summer_school_2022
geojulia geopandas julia python rspatial rstats spatialmachinelearning
Last synced: 2 months ago
JSON representation
Links and slides from the OpenGeoHub summer school 2022
- Host: GitHub
- URL: https://github.com/nowosad/ogh_summer_school_2022
- Owner: Nowosad
- Created: 2022-09-02T13:58:58.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-10-22T18:21:52.000Z (about 2 years ago)
- Last Synced: 2024-06-11T16:07:28.505Z (7 months ago)
- Topics: geojulia, geopandas, julia, python, rspatial, rstats, spatialmachinelearning
- Homepage: https://opengeohub.org/summer-school/siegburg-2022/
- Size: 17 MB
- Stars: 47
- Watchers: 4
- Forks: 8
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## [**28 August -- 03 September 2022, OpenGeoHub Summer School 2022, Siegburg**](https://opengeohub.org/summer-school/siegburg-2022/)
![](resources/logo.png)
### Tom Hengl: “Modern challanges of geospatial data science: the Open-Earth-Monitor project”
- [Video](https://doi.org/10.5446/59400)
### Ben Graeler: “AI Strategy for Earth System Data – KI:STE project”
### Martin Schultz: “Machine learning for weather, air quality and climate”- [Video](https://doi.org/10.5446/59411)
- [Workshop materials](https://b2drop.eudat.eu/s/GCyCgxPe3Wwpzpe)### Markus Konkol: “Open Reproducible Research – Concepts, challenges, and solutions”
- [Video](https://doi.org/10.5446/59403)
- [Slides](https://github.com/Nowosad/OGH_summer_school_2022/raw/main/resources/open_reproducible_research.pdf)### Jakub Nowosad: “Geocomputation with R’s guide to reproducible spatial data analysis”
- [Video](https://doi.org/10.5446/59404)
- [Slides](https://jakubnowosad.com/ogh2022/)### Edzer Pebesma: “R-spatial updates: sf, sftime, stars”
- [Video part I](https://doi.org/10.5446/59401)
- [Video part II](https://doi.org/10.5446/59406)
- [Workshop materials](https://github.com/edzer/OGH22)### Christian Autermann: “GeoNode as Research Data Infrastructure”
### Martijn Visser; Maarten Pronk: “JuliaGeo: a gentle introduction”- [Video](https://doi.org/10.5446/59405)
- [Workshop materials](https://github.com/evetion/OGH2022)### Martin Fleischmann: “Introduction to GeoPandas and its Python ecosystem”
- [Video](https://doi.org/10.5446/59414)
- [Workshop materials](https://github.com/martinfleis/opengeohub2022-tutorial)### Krzystof Dyba: “Benchmarking R and Python for spatial data processing”
- [Video](https://doi.org/10.5446/59407)
- [Workshop materials](https://github.com/kadyb/OGH2022)### Ben Graeler: “Extreme events session”
- [Workshop materials](https://github.com/BenGraeler/ogh2022)
### Leandro Parente: “Accessing and using data cubes: spatial overlay, visualization and modeling – Python tutorial”
- [Video](https://doi.org/10.5446/59408)
- [Workshop materials](https://gitlab.com/leal.parente/geo-snippets/-/blob/main/data_cubes/Accessing_and_using_data_cubes_summer_school_2022.ipynb)### Markus Abel: “Stochastic processes, analysis, examples (Python tutorial)”
- [Video](https://doi.org/10.5446/59416)
### Edzer Pebesma & Leandro Parente: “Geo-arrow and geo-parquet”
- [Video](https://doi.org/10.5446/59418)
- [Workshop materials #1](https://edzer.github.io/OGH22/columnar.html)
- [Workshop materials #2](https://gitlab.com/leal.parente/geo-snippets/-/blob/main/lidar/icesat2_atl08.ipynb)### Ribana Roscher: “Explainable ML”
- [Video](https://doi.org/10.5446/59417)
- [Slides #1](https://github.com/Nowosad/OGH_summer_school_2022/raw/main/resources/lecture-KISTE_SS_roscher_partI.pdf)
- [Slides #2](https://github.com/Nowosad/OGH_summer_school_2022/raw/main/resources/lecture-KISTE_SS_roscher_partII.pdf)### Patrick Schratz: “Introduction to mlr3 (R tutorial)” and Patrick Schratz & Leandro Parente: “Spatial modeling using mlr3 (R tutorial)”
- [Video](https://doi.org/10.5446/59409)
- [Workshop materials #1](https://github.com/mlr-org/opengeohub-summer-school-2022)
- [Workshop materials #2](https://gitlab.com/leal.parente/geo-snippets/-/tree/main/mlr3)### Hanna Meyer: “ML in R: how to deal with extrapolation and overfitting problems”
- [Video](https://doi.org/10.5446/59412)
- [Workshop materials](https://github.com/HannaMeyer/OpenGeoHub_2022)### Tim Appelhans: “Visualization cloud-optimized (large) datasets in R (R tutorial)”
- [Video](https://doi.org/10.5446/59410)
- [Workshop materials #1](https://cn-raster-data-vis.s3.eu-central-1.amazonaws.com/cn-raster-data-vis.html)
- [Workshop materials #2](https://cn-vector-data-vis.s3.eu-central-1.amazonaws.com/cn-vector-data-vis.html)
- [Workshop materials #3](https://cn-data-creation.s3.eu-central-1.amazonaws.com/cloud_optimised_data.html)### Other
- [Hackathon instructions](https://gitlab.com/leal.parente/geo-snippets/-/blob/main/hackathon/pasture_classification_summer_school_2022.ipynb)
- [Winning hackathon submission by Francisco Zambrano](https://frzambra.github.io/Hackaton1/report_hack1.html)