An open API service indexing awesome lists of open source software.

https://github.com/nsat/pypredict

Spire port of predict open-source tracking library
https://github.com/nsat/pypredict

predict python satellite space tracking

Last synced: 4 months ago
JSON representation

Spire port of predict open-source tracking library

Awesome Lists containing this project

README

          

[![ci](https://github.com/nsat/pypredict/actions/workflows/python-app.yml/badge.svg)](https://github.com/nsat/pypredict/actions/workflows/python-app.yml)

PyPredict
=======

>NOTE: To preserve compatibility with `predict`, pypredict uses __north__ latitude and __west__ longitude for terrestrial coordinates.

Do you want accurate and time-tested satellite tracking and pass prediction in a convenient python wrapper?
You're in the right place.

PyPredict is a C Python extension directly adapted from the ubiquitous [predict](http://www.qsl.net/kd2bd/predict.html) satellite tracking command line application.
Originally written for the commodore 64, predict has a proven pedigree; We just aim to provide a convenient API.
PyPredict is a port of the predict codebase and should yield identical results.

If you think you've found an error in `pypredict`, please include output from `predict` on same inputs to the bug report.
If you think you've found a bug in predict, please report and we'll coordinate with upstream.

### Installation

```bash
sudo apt-get install python-dev
sudo python setup.py install
```

## Usage

#### Observe a satellite (relative to a position on earth)

```python
import predict
tle = """0 LEMUR 1
1 40044U 14033AL 15013.74135905 .00002013 00000-0 31503-3 0 6119
2 40044 097.9584 269.2923 0059425 258.2447 101.2095 14.72707190 30443"""
qth = (37.771034, 122.413815, 7) # lat (N), long (W), alt (meters)
predict.observe(tle, qth) # optional time argument defaults to time.time()
# => {'altitude': 676.8782276657903,
# 'azimuth': 96.04762045174824,
# 'beta_angle': -27.92735429908726,
# 'decayed': 0,
# 'doppler': 1259.6041017128405,
# 'eci_obs_x': -2438.227652191655,
# 'eci_obs_y': -4420.154476060397,
# 'eci_obs_z': 3885.390601342013,
# 'eci_sun_x': 148633398.020844,
# 'eci_sun_y': -7451536.44122029,
# 'eci_sun_z': -3229999.50056359,
# 'eci_vx': 0.20076213530665032,
# 'eci_vy': -1.3282146055077213,
# 'eci_vz': 7.377067234096598,
# 'eci_x': 6045.827328897242,
# 'eci_y': -3540.5885778261277,
# 'eci_z': -825.4065096776636,
# 'eclipse_depth': -87.61858291647795,
# 'elevation': -43.711904591801726,
# 'epoch': 1521290038.347793,
# 'footprint': 5633.548906707907,
# 'geostationary': 0,
# 'has_aos': 1,
# 'latitude': -6.759563817939698,
# 'longitude': 326.1137007912563,
# 'name': '0 LEMUR 1',
# 'norad_id': 40044,
# 'orbit': 20532,
# 'orbital_model': 'SGP4',
# 'orbital_phase': 145.3256815318047,
# 'orbital_velocity': 26994.138671706416,
# 'slant_range': 9743.943478523843,
# 'sunlit': 1,
# 'visibility': 'D'
# }
```

#### Show upcoming transits of satellite over ground station

```python
# start and stop transit times as UNIX timestamp
transit_start = 1680775200
transit_stop = 1681034400

p = predict.transits(tle, qth, transit_start, transit_stop)

print("Start of Transit\tTransit Duration (s)\tPeak Elevation")
for transit in p:
print(f"{transit.start}\t{transit.duration()}\t{transit.peak()['elevation']}")
```

#### Modeling an entire constellation

Generating transits for a lot of satellites over a lot of ground stations can be slow.
Luckily, generating transits for each satellite-groundstation pair can be parallelized for a big speed-up.

```python
import itertools
from multiprocessing.pool import Pool
import time

import predict
import requests

# Define a function that returns arguments for all the transits() calls you want to make
def _transits_call_arguments():
now = time.time()
tle = requests.get('http://tle.spire.com/25544').text.rstrip()
for latitude in range(-90, 91, 15):
for longitude in range(-180, 181, 15):
qth = (latitude, longitude, 0)
yield {'tle': tle, 'qth': qth, 'ending_before': now+60*60*24*7}

# Define a function that calls the transit function on a set of arguments and does per-transit processing
def _transits_call_fx(kwargs):
try:
transits = list(predict.transits(**kwargs))
return [t.above(10) for t in transits]
except predict.PredictException:
pass

# Map the transit() caller across all the arguments you want, then flatten results into a single list
pool = Pool(processes=10)
array_of_results = pool.map(_transits_call_fx, _transits_call_arguments())
flattened_results = list(itertools.chain.from_iterable(filter(None, array_of_results)))
transits = flattened_results
```

NOTE: If precise accuracy isn't necessary (for modeling purposes, for example) setting the tolerance argument
to the `above` call to a larger value, say 1 degree, can provide a significant performance boost.

#### Call predict analogs directly

```python
predict.quick_find(tle.split('\n'), time.time(), (37.7727, 122.407, 25))
predict.quick_predict(tle.split('\n'), time.time(), (37.7727, 122.407, 25))
```

## API


observe(tle, qth[, at=None])
Return an observation of a satellite relative to a groundstation.
qth groundstation coordinates as (lat(N),long(W),alt(m))
If at is not defined, defaults to current time (time.time())
Returns an "observation" or dictionary containing:
altitude _ altitude of satellite in kilometers
azimuth - azimuth of satellite in degrees from perspective of groundstation.
beta_angle
decayed - 1 if satellite has decayed out of orbit, 0 otherwise.
doppler - doppler shift between groundstation and satellite.
eci_obs_x
eci_obs_y
eci_obs_z
eci_sun_x
eci_sun_y
eci_sun_z
eci_vx
eci_vy
eci_vz
eci_x
eci_y
eci_z
eclipse_depth
elevation - elevation of satellite in degrees from perspective of groundstation.
epoch - time of observation in seconds (unix epoch)
footprint
geostationary - 1 if satellite is determined to be geostationary, 0 otherwise.
has_aos - 1 if the satellite will eventually be visible from the groundstation
latitude - north latitude of point on earth directly under satellite.
longitude - west longitude of point on earth directly under satellite.
name - name of satellite from first line of TLE.
norad_id - NORAD id of satellite.
orbit
orbital_phase
orbital_model
orbital_velocity
slant_range - distance to satellite from groundstation in meters.
sunlit - 1 if satellite is in sunlight, 0 otherwise.
visibility
transits(tle, qth[, ending_after=None][, ending_before=None])
Returns iterator of Transit objects representing passes of tle over qth.
If ending_after is not defined, defaults to current time
If ending_before is not defined, the iterator will yield until calculation failure.

>NOTE: We yield passes based on their end time. This means we'll yield currently active passes in the two-argument invocation form, but their start times will be in the past.


Transit(tle, qth, start, end)
Utility class representing a pass of a satellite over a groundstation.
Instantiation parameters are parsed and made available as fields.
duration()
Returns length of transit in seconds
peak(epsilon=0.1)
Returns epoch time where transit reaches maximum elevation (within ~epsilon)
at(timestamp)
Returns observation during transit via quick_find(tle, timestamp, qth)
aboveb(elevation, tolerance)
Returns portion of transit above elevation. If the entire transit is below the target elevation, both
endpoints will be set to the peak and the duration will be zero. If a portion of the transit is above
the elevation target, the endpoints will be between elevation and elevation + tolerance (unless
endpoint is already above elevation, in which case it will be unchanged)
quick_find(tle[, time[, (lat, long, alt)]])
time defaults to current time
(lat, long, alt) defaults to values in ~/.predict/predict.qth
Returns observation dictionary equivalent to observe(tle, time, (lat, long, alt))
quick_predict(tle[, time[, (lat, long, alt)]])
Returns an array of observations for the next pass as calculated by predict.
Each observation is identical to that returned by quick_find.