Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/nstarman/overload_numpy

Utilities for NumPy overrides with __array_(u)func(tion)__
https://github.com/nstarman/overload_numpy

interoperability mypyc numpy python

Last synced: 2 months ago
JSON representation

Utilities for NumPy overrides with __array_(u)func(tion)__

Awesome Lists containing this project

README

        

Overload ``NumPy`` ufuncs and functions
#######################################

.. container::

|PyPI status| |coverage status| |RTD status| |black status| |pre-commit status|

``overload_numpy`` provides easy-to-use tools for working with ``NumPy``'s
``__array_(u)func(tion)__``. The library is fully typed and wheels are compiled
with mypyc.

Implementing an Overload
------------------------

First, some imports:

>>> from dataclasses import dataclass, fields
>>> from typing import ClassVar
>>> import numpy as np
>>> from overload_numpy import NumPyOverloader, NPArrayOverloadMixin

Now we can define a ``NumPyOverloader`` instance:

>>> W_FUNCS = NumPyOverloader()

The overloads apply to an array wrapping class. Let's define one:

>>> @dataclass
... class Wrap1D(NPArrayOverloadMixin):
... '''A simple array wrapper.'''
... x: np.ndarray
... NP_OVERLOADS: ClassVar[NumPyOverloader] = W_FUNCS

>>> w1d = Wrap1D(np.arange(3))

Now both ``numpy.ufunc`` (e.g. ``numpy.add``) and ``numpy`` functions (e.g.
``numpy.concatenate``) can be overloaded and registered for ``Wrap1D``.

>>> @W_FUNCS.implements(np.add, Wrap1D)
... def add(w1, w2):
... return Wrap1D(np.add(w1.x, w2.x))

>>> @W_FUNCS.implements(np.concatenate, Wrap1D)
... def concatenate(w1ds):
... return Wrap1D(np.concatenate(tuple(w.x for w in w1ds)))

Time to check these work:

>>> np.add(w1d, w1d)
Wrap1D(x=array([0, 2, 4]))

>>> np.concatenate((w1d, w1d))
Wrap1D(x=array([0, 1, 2, 0, 1, 2]))

``ufunc`` also have a number of methods: 'at', 'accumulate', etc. The function
dispatch mechanism in `NEP13
`_ says that "If one of
the input or output arguments implements __array_ufunc__, it is executed instead
of the ufunc." Currently the overloaded ``numpy.add`` does not work for any of
the ``ufunc`` methods.

>>> try: np.add.accumulate(w1d)
... except Exception: print("failed")
failed

``ufunc`` method overloads can be registered on the wrapped ``add``
implementation:

>>> @add.register('accumulate')
... def add_accumulate(w1):
... return Wrap1D(np.add.accumulate(w1.x))

>>> np.add.accumulate(w1d)
Wrap1D(x=array([0, 1, 3]))

Dispatching Overloads for Subclasses
------------------------------------
What if we defined a subclass of ``Wrap1D``?

>>> @dataclass
... class Wrap2D(Wrap1D):
... '''A simple 2-array wrapper.'''
... y: np.ndarray

The overload for ``numpy.concatenate`` registered on ``Wrap1D`` will not work
correctly for ``Wrap2D``. However, ``NumPyOverloader`` supports single-dispatch
on the calling type for the overload, so overloads can be customized for
subclasses.

>>> @W_FUNCS.implements(np.add, Wrap2D)
... def add(w1, w2):
... print("using Wrap2D implementation...")
... return Wrap2D(np.add(w1.x, w2.x),
... np.add(w1.y, w2.y))

>>> @W_FUNCS.implements(np.concatenate, Wrap2D)
... def concatenate2(w2ds):
... print("using Wrap2D implementation...")
... return Wrap2D(np.concatenate(tuple(w.x for w in w2ds)),
... np.concatenate(tuple(w.y for w in w2ds)))

Checking these work:

>>> w2d = Wrap2D(np.arange(3), np.arange(3, 6))
>>> np.add(w2d, w2d)
using Wrap2D implementation...
Wrap2D(x=array([0, 2, 4]), y=array([ 6, 8, 10]))

>>> np.concatenate((w2d, w2d))
using Wrap2D implementation...
Wrap2D(x=array([0, 1, 2, 0, 1, 2]), y=array([3, 4, 5, 3, 4, 5]))

Great! But rather than defining a new implementation for each subclass,
let's see how we could write a more broadly applicable overload:

>>> @W_FUNCS.implements(np.add, Wrap1D) # overriding both
... @W_FUNCS.implements(np.add, Wrap2D) # overriding both
... def add_general(w1, w2):
... WT = type(w1)
... return WT(*(np.add(getattr(w1, f.name), getattr(w2, f.name))
... for f in fields(WT)))

>>> @W_FUNCS.implements(np.concatenate, Wrap1D) # overriding both
... @W_FUNCS.implements(np.concatenate, Wrap2D) # overriding both
... def concatenate_general(ws):
... WT = type(ws[0])
... return WT(*(np.concatenate(tuple(getattr(w, f.name) for w in ws))
... for f in fields(WT)))

Checking these work:

>>> np.add(w2d, w2d)
Wrap2D(x=array([0, 2, 4]), y=array([ 6, 8, 10]))

>>> np.concatenate((w2d, w2d))
Wrap2D(x=array([0, 1, 2, 0, 1, 2]), y=array([3, 4, 5, 3, 4, 5]))

>>> @dataclass
... class Wrap3D(Wrap2D):
... '''A simple 3-array wrapper.'''
... z: np.ndarray

>>> w3d = Wrap3D(np.arange(2), np.arange(3, 5), np.arange(6, 8))
>>> np.add(w3d, w3d)
Wrap3D(x=array([0, 2]), y=array([6, 8]), z=array([12, 14]))
>>> np.concatenate((w3d, w3d))
Wrap3D(x=array([0, 1, 0, 1]), y=array([3, 4, 3, 4]), z=array([6, 7, 6, 7]))

Assisting Groups of Overloads
-----------------------------

In the previous examples we wrote implementations for a single NumPy
function. Overloading the full set of NumPy functions this way would take a
long time.

Wouldn't it be better if we could write many fewer, based on groups of NumPy
functions?

>>> add_funcs = {np.add, np.subtract}
>>> @W_FUNCS.assists(add_funcs, types=Wrap1D, dispatch_on=Wrap1D)
... def add_assists(cls, func, w1, w2, *args, **kwargs):
... return cls(*(func(getattr(w1, f.name), getattr(w2, f.name), *args, **kwargs)
... for f in fields(cls)))

>>> stack_funcs = {np.vstack, np.hstack, np.dstack, np.column_stack, np.row_stack}
>>> @W_FUNCS.assists(stack_funcs, types=Wrap1D, dispatch_on=Wrap1D)
... def stack_assists(cls, func, ws, *args, **kwargs):
... return cls(*(func(tuple(getattr(v, f.name) for v in ws), *args, **kwargs)
... for f in fields(cls)))

Checking these work:

>>> np.subtract(w2d, w2d)
Wrap2D(x=array([0, 0, 0]), y=array([0, 0, 0]))

>>> np.vstack((w1d, w1d))
Wrap1D(x=array([[0, 1, 2],
[0, 1, 2]]))

>>> np.hstack((w1d, w1d))
Wrap1D(x=array([0, 1, 2, 0, 1, 2]))

We would also like to implement the ``accumulate`` method for all the
``add_funcs`` overloads:

>>> @add_assists.register("accumulate")
... def add_accumulate_assists(cls, func, w1, *args, **kwargs):
... return cls(*(func(getattr(w1, f.name), *args, **kwargs)
... for f in fields(cls)))

>>> np.subtract.accumulate(w2d)
Wrap2D(x=array([ 0, -1, -3]), y=array([ 3, -1, -6]))

Details
-------

Want to see about type constraints and the API? Check out the docs!

.. |black status| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
:alt: Codestyle Black

.. |coverage status| image:: https://codecov.io/gh/nstarman/overload_numpy/branch/main/graph/badge.svg
:target: https://codecov.io/gh/nstarman/overload_numpy
:alt: overload_numpy's Coverage Status

.. |pre-commit status| image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white
:target: https://github.com/pre-commit/pre-commit
:alt: pre-commit

.. |PyPI status| image:: https://img.shields.io/pypi/v/overload_numpy.svg
:target: https://pypi.org/project/overload_numpy
:alt: overload_numpy's PyPI Status

.. |RTD status| image:: https://readthedocs.org/projects/overload-numpy/badge/?version=latest
:target: https://overload-numpy.readthedocs.io/en/latest/?badge=latest
:alt: overload_numpy's Documentation Status