Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ntnu-arl/lidar_degeneracy_datasets

LiDAR degeneracy dataset for LiDAR-radar-inertial fusion methods.
https://github.com/ntnu-arl/lidar_degeneracy_datasets

imu inertial-navigation-systems lidar lidar-degeneracy odometry radar

Last synced: about 2 months ago
JSON representation

LiDAR degeneracy dataset for LiDAR-radar-inertial fusion methods.

Awesome Lists containing this project

README

        

# LiDAR Degeneracy Datasets

Dataset associated with submission for handling LiDAR-degenerative environments through LiDAR-radar-inertial fusion with factor graphs.

The datasets consist of sensor measurements (IMU, LiDAR, and FMCW radar) of an aerial robot manually flown through environments challenging for LiDAR sensors. These are a biking tunnel (geometric self-similarity) and a university corridor filled with fog (obscurants). In addition CAD extrinsics between the sensors are provided.

## Environments

### [Fyllingsdalen Tunnel](https://maps.app.goo.gl/Crj1o13NznuE5fZn8)

Manual flight along a 8m-wide, 500m-long, straight section of a biking tunnel in Bergen, Norway.

![fyllingsdalen bycicale tunnel image](images/drone_in_tunnel.png)

Bag files can be found [here](https://ntnu.box.com/s/congyw29kpo80exau7e1tpeyoqay6u9d)

### [Fog-Filled University Corridor](https://maps.app.goo.gl/V5ZfTVAy4xxQHPzs5)

Manual flight in a university environment in the Elektro building of NTNU in Trondheim, Norway. The first corridor flown through after takeoff is filled with dense fog.

![fog-filled university corridor image](images/image-1580.png)

Bag files can be found [here](https://ntnu.box.com/s/30syn4fpmq5tfgosy99tji4aqirooj1r)

## Robot Equipiment

### Drone

#### Sensors

Synchronized using microcontroller-based internally developed synchronization/triggering module

- [Ouster OS0-128 LiDAR](https://ouster.com/products/scanning-lidar/os0-sensor/)
- [VectorNav VN100 IMU](https://www.vectornav.com/products/detail/vn-100)
- [Texas Instruments IWR6843AOP-EVM Radar](https://www.ti.com/tool/IWR6843AOPEVM)

The header time stamp for IMU and radar originate from the triggering module, to replay the trigger-stamped LiDAR data from packet topics use [this](https://github.com/ntnu-arl/ouster-ros/tree/dev/sensor_sync_replay) driver.

##### Topics

| **Source** | **Topic** | **Rate [Hz]** |
|:----------: |------------------------------------------------------------------------------------------------------------------------------------------------------------------- |--------------- |
| Triggering | - `/sensor_sync_node/trigger_0`
- `/sensor_sync_node/trigger_1` | - 800
- 10 |
| IMU | `/vectornav_node/uncomp_imu` | 200 |
| LiDAR | - `/os_cloud_node/imu_packets`
- `/os_cloud_node/lidar_packets`
- `/os_cloud_node/metadata` | 10 |
| Radar | `/radar/cloud` | 10 |

##### Extrinsics

All extrinsics are given with respect to the IMU

**LiDAR**

- translation [x, y, z]
- `[-0.00171, 0.02149, 0.0358]`
- orientation [x, y, z, w]
- `[0.000462, 0.0008483, 0.0028835, 0.9999954]`

**Radar**

- translation [x, y, z]
- `[0.07771, 0.02141, -0.03631]`
- orientation [x, y, z, w]
- `[0.953717, 0, -0.3007058, 0]`

## Acknowledgements

We thank the Vestland Fylkeskommune for providing access to the Fyllingsdal sykkeltunnel.