https://github.com/nubank/fklearn
fklearn: Functional Machine Learning
https://github.com/nubank/fklearn
data-analysis data-science machine-learning ml python
Last synced: 14 days ago
JSON representation
fklearn: Functional Machine Learning
- Host: GitHub
- URL: https://github.com/nubank/fklearn
- Owner: nubank
- License: apache-2.0
- Created: 2019-02-27T14:32:57.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2025-02-26T19:40:14.000Z (about 2 months ago)
- Last Synced: 2025-04-09T19:13:52.030Z (14 days ago)
- Topics: data-analysis, data-science, machine-learning, ml, python
- Language: Jupyter Notebook
- Homepage:
- Size: 2.35 MB
- Stars: 1,516
- Watchers: 105
- Forks: 168
- Open Issues: 39
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE-OF-CONDUCT.md
- Codeowners: .github/CODEOWNERS
Awesome Lists containing this project
- awesome-python-machine-learning-resources - GitHub - 54% open · ⏱️ 25.08.2022): (机器学习框架)
- awesome-sciml - nubank/fklearn: fklearn: Functional Machine Learning
- awesome-list - fklearn - A machine learning library that uses functional programming principles. (Machine Learning Framework / General Purpose Framework)
- awesome-made-by-brazilians - fklearn
- StarryDivineSky - nubank/fklearn - learn的理念,并遵循以下原则:真实场景的验证、生产模型与验证模型一致、模型易于部署、结果易于复现和分析。fklearn可以通过pip安装,并提供详细的文档和贡献指南。 (其他_机器学习与深度学习)
README
# fklearn: Functional Machine Learning

[](https://fklearn.readthedocs.io/en/latest/?badge=latest)
[](https://gitter.im/fklearn-python/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)

[](https://opensource.org/licenses/Apache-2.0)**fklearn** uses functional programming principles to make it easier to solve real problems with Machine Learning.
The name is a reference to the widely known [scikit-learn](https://scikit-learn.org/stable/) library.
**fklearn Principles**
1. Validation should reflect real-life situations.
2. Production models should match validated models.
3. Models should be production-ready with few extra steps.
4. Reproducibility and in-depth analysis of model results should be easy to achieve.[Documentation](https://fklearn.readthedocs.io/en/latest/) |
[Getting Started](https://fklearn.readthedocs.io/en/latest/getting_started.html) |
[API Docs](https://fklearn.readthedocs.io/en/latest/api/modules.html) |
[Contributing](https://fklearn.readthedocs.io/en/latest/contributing.html) |## Installation
To install via pip:
```
pip install fklearn
```You can also install from the source:
```sh
git clone git@github.com:nubank/fklearn.git
cd fklearn
git checkout master
pip install -e .
```## License
[Apache License 2.0](LICENSE)