https://github.com/nubebytes/yoda-api
API for Yoda-NER and Yoda-FITS model. NLP models for Google Feed product optimization
https://github.com/nubebytes/yoda-api
ai google-feed named-entity-recognition ner text-summarization token-classification yoda
Last synced: 7 months ago
JSON representation
API for Yoda-NER and Yoda-FITS model. NLP models for Google Feed product optimization
- Host: GitHub
- URL: https://github.com/nubebytes/yoda-api
- Owner: nubebytes
- License: mit
- Created: 2022-07-28T14:29:35.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2023-07-05T07:19:34.000Z (over 2 years ago)
- Last Synced: 2025-01-10T06:59:55.101Z (9 months ago)
- Topics: ai, google-feed, named-entity-recognition, ner, text-summarization, token-classification, yoda
- Language: Python
- Homepage:
- Size: 1.15 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# YODA API
## Instalación
1. Creamos un entonro virtual de Python con `virtualenv venv` o `python -m venv ./venv`
2. Instalamos los requisitos con `pip install -r requirements,txt`## Ejecuta el servidor en local
---
Entramos en la carpeta src: `cd src`
> Para desarrollo
`uvicorn main:app --reload --port 8000` or `python dev.py`
> Para producción
`uvicorn main:app --port 8000`
## Ejecuta en local con Docker
---
1. Construye la imagen con `docker build -t yoda-api .`
2. Ejecútalo: `docker run -p 8000:8000 -e PORT=8000 --env-file .env yoda-api`
3. Accede desde el navegador en `http://localhost:8000`## Ejecución en la nube
---
Comando: `gunicorn -w 4 -k gevent -t 120 main:app`