An open API service indexing awesome lists of open source software.

https://github.com/nunorc/sunspots-estimator

estimate monthly average of active sunspots in the Sun
https://github.com/nunorc/sunspots-estimator

Last synced: about 1 month ago
JSON representation

estimate monthly average of active sunspots in the Sun

Awesome Lists containing this project

README

        

# Sunspots Estimator

A convolutional neural network to predict the monthly average active sunspots
in the Sun. The data is available through the [Y-Space](http://y-space.pw/) API.
The Jupyter Notebook [sunspots-estimator.ipynb](sunspots-estimator.ipynb)
includes the process of creating the dataset and training the model.

The model is defined using a combination of a convolutional layer, LSTM layers,
and dense layers. The output is a single node layer -- the predicted number
of sunspots:

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv-1 (Conv1D) (None, None, 32) 192
_________________________________________________________________
lstm-1 (LSTM) (None, None, 60) 22320
_________________________________________________________________
lstm-2 (LSTM) (None, None, 60) 29040
_________________________________________________________________
fc-1 (Dense) (None, None, 20) 1220
_________________________________________________________________
fc-2 (Dense) (None, None, 10) 210
_________________________________________________________________
output (Dense) (None, None, 1) 11
=================================================================
Total params: 52,993
Trainable params: 52,993
Non-trainable params: 0

The following plot illustrates the original values (the blue line) versus the
model predictions (orange line.).

![predictions](imgs/predictions.png)

The final version of the model is saved in [sunspots-estimator.h5](sunspots-estimator.h5).

### Acknowledgments

Thank you to Laurence Moroney for the initial bootstrap and motivation.