Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nusnlp/ptrnetdecoding4jere
Code for modeling encoder-decoder architecture with pointer network for joint entity and relation extraction (AAAI 2020).
https://github.com/nusnlp/ptrnetdecoding4jere
Last synced: 17 days ago
JSON representation
Code for modeling encoder-decoder architecture with pointer network for joint entity and relation extraction (AAAI 2020).
- Host: GitHub
- URL: https://github.com/nusnlp/ptrnetdecoding4jere
- Owner: nusnlp
- Created: 2019-11-11T05:30:43.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-02-28T03:08:23.000Z (almost 5 years ago)
- Last Synced: 2023-10-20T22:08:31.383Z (over 1 year ago)
- Language: Python
- Homepage:
- Size: 17.6 KB
- Stars: 100
- Watchers: 8
- Forks: 13
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# PtrNetDecoding4JERE
This repository contains the source code of the paper "Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction" published in AAAI 2020.
### Datasets ###
NYT24 and NYT29 datasets used for experiments in the paper can be downloaded from the following link:
https://drive.google.com/drive/folders/1RPD9kuHUHp4O3gQLLD1CgDPigAlRiR7L?usp=sharing
### Requirements ###
1) python3.5
2) pytorch 1.1.0
3) CUDA 8.0### How to run ###
#### Word Decoding Model ####
python3.5 word_decoder.py gpu_id random_seed source_data_dir target_data_dit train/test
python3.5 word_decoder.py 0 1023 NYT29/ NYT29/word_decode_model train
python3.5 word_decoder.py 0 1023 NYT29/ NYT29/word_decode_model test
#### Pointer Network-based Decoding Model ####
python3.5 ptrnet_decoder.py gpu_id random_seed source_data_dir target_data_dit train/test
python3.5 ptrnet_decoder.py 0 1023 NYT29/ NYT29/ptrnet_decode_model train
python3.5 ptrnet_decoder.py 0 1023 NYT29/ NYT29/ptrnet_decode_model test
### Publication ###
https://arxiv.org/abs/1911.09886
If you use the source code or models from this work, please cite our paper:
```
@inproceedings{nayak2019ptrnetdecoding,
author = {Nayak, Tapas and Ng, Hwee Tou},
title = {Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction},
booktitle = {Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI)},
year = {2020}
}
```