Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nzhzds/taostd
taostd is a simple sql executor for TDengine.
https://github.com/nzhzds/taostd
Last synced: 2 months ago
JSON representation
taostd is a simple sql executor for TDengine.
- Host: GitHub
- URL: https://github.com/nzhzds/taostd
- Owner: nzhzds
- License: apache-2.0
- Created: 2021-11-21T08:36:45.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2021-11-22T03:23:27.000Z (about 3 years ago)
- Last Synced: 2024-10-04T09:17:25.679Z (3 months ago)
- Language: Python
- Size: 26.4 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-tdengine - taostd - taostd is a simple sql executor for TDengine. (Data)
README
##### taostd是TDengine(https://github.com/taosdata/TDengine) 时序数据库的python connector简单封装, 会自动打开和释放数据库连接。本项目主要是希望在使用TDengine过程中,能方便的高效批量插入数据。此外实现了一个简单的连接池来共享连接,避免重复创建、关闭数据库连接。
##### 注意:为了使用方便,本项目使用了全局变量,笔者使用环境是在容器中部署微服务,这不会有问题;如果在一个环境启多个python服务的,请检查是否相互影响。
##### 安装
```
pip install taostd
```
##### 导入
```
from taostd import td
```
##### 使用前,请在taos客户端创建数据库:CREATE DATABASE IF NOT EXISTS test;
##### 必须指定database;pool_size指定连接池大小,是可选的,默认是1,可以根据需要设置大小
##### tz_offset默认是东八区:8
##### 本例使用客户端taos.cfg配置,其它参数请参照taos.connect()方法,初始化后,项目里到处都可以用了
```
td.init_db(database="test", pool_size=2, tz_offset=8)
```
##### 创建stable
```
td.execute("CREATE STABLE IF NOT EXISTS meters(ts timestamp, current float, voltage float, phase int) TAGS(location nchar(20), groupId tinyint)")
```
##### 往单表插入一条数据,如果表不存在就先创建表,必须指定tags,如本例中的'location'和'groupId'
```
td.insert_one_with_stable(table='meter_01', stable='meters', ts=datetime.now(), current=0.2550, voltage=0.3542, phase=0, location='北京', groupId=0)
```
##### 往单表插入一条数据,表已经存在, 可以直接插入,不需要指定 stable和tags
```
td.insert_one(table='meter_01', ts=datetime.now()-timedelta(minutes=10), current=0.3550, voltage=0.5542, phase=1)
```
##### 往单张表插入多条记录
```
meters = [
{"ts": datetime.now() - timedelta(minutes=1), "current": 0.3550, "voltage": 0.5542, "phase": 2},
{"ts": datetime.now() + timedelta(hours=1), "current": 0.3550, "voltage": 0.5542, "phase": 3},
]
td.insert_many(table='meter_01', args=meters)
```
##### 往单张表插入多条记录, 如果表不存在,就创建表
```
meters = [
{"ts": "2021-11-19 15:30:44.123445", "current": 0.3550, "voltage": 0.5542, "phase": 0, "location": "上海", "groupId": 1},
{"ts": datetime.now() - timedelta(hours=1), "current": 0.3550, "voltage": 0.5542, "phase": 1, "location": "上海", "groupId": 1},
]
td.insert_many_with_stable(table='meter_02', stable="meters", args=meters)
```
##### 同时往多张表插入记录, 'meter_01', 'meter_02'表已经存在,可以不加stable;'meter_03'必须指定stable
```
meters = [
{"table": "meter_01", "ts": "2021-11-19 17:30:43.1234", "current": 0.3550, "voltage": 0.5542, "phase": 4, "location": "北京", "groupId": 0},
{"table": "meter_02", "ts": "2021-11-19 17:30:43.1234", "current": 0.3550, "voltage": 0.5542, "phase": 2, "location": "上海", "groupId": 1},
{"table": "meter_03", "stable": "meters", "ts": datetime.now(), "current": 0.3550, "voltage": 0.5542, "phase": 0, "location": "天津", "groupId": 2},
]
td.insert_many_tables(args=meters)
```
##### 查询表中行数
```
count = td.get("select count(1) from meters")
```
##### 查询单值
```
last_current = td.get("select last(current) from meters")
```
##### 查询一行
```
last_row = td.select_one("select last_row(*) from meters")
```
##### 查询 list
```
bj_rows = td.select("select * from meters where location = '北京'")
```#### 项目起因
##### 笔者在做一个业余项目时用到TDengine, 信息采集端用的是python语言,对外服务端并发量较大用的是Golang。对于采集的的需求就是方便的接入各种数据源,并能高效的批量插入。而笔者并不是一个纯粹的python开发者,只是在简单的项目或机器学习是用到python,在用python操作数据库时,还是沿用互联网项目的思维,习惯能完全掌控SQL,不习惯用ORM。所以本项目不是很python,甚至有用的不对的地方,还请各位看官不吝赐教。常用邮箱为 [email protected].