Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/o-laurent/multivariate-ks-test
Python implementation of an extension of the Kolmogorov-Smirnov test for multivariate samples
https://github.com/o-laurent/multivariate-ks-test
kolmogorov-smirnov kolmogorov-smirnov-tests multivariate python statistical-tests
Last synced: 6 days ago
JSON representation
Python implementation of an extension of the Kolmogorov-Smirnov test for multivariate samples
- Host: GitHub
- URL: https://github.com/o-laurent/multivariate-ks-test
- Owner: o-laurent
- License: mit
- Created: 2023-07-31T17:01:19.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-08-06T09:01:11.000Z (over 1 year ago)
- Last Synced: 2024-11-08T19:49:01.394Z (2 months ago)
- Topics: kolmogorov-smirnov, kolmogorov-smirnov-tests, multivariate, python, statistical-tests
- Language: Python
- Homepage:
- Size: 8.79 KB
- Stars: 11
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Multivariate extension of the Kolmogorov-Smirnov test
This repository implements the extension of the KS test proposed by Michael Naaman in
[On the tight constant in the multivariate Dvoretzky–Kiefer–Wolfowitz inequality](https://www.sciencedirect.com/science/article/pii/S016771522100050X/pdf)
in the one and two-sample cases.This package was translated from the original MATLAB code provided by the author.
Please feel free to open an issue if you have any problems or questions.
## Installation
Clone the repository and install it with pip:
```bash
cd multivariate-ks-test && pip install .
```Please raise an issue if you want to install it from PyPI.
## Usage example
```python
import numpy as npfrom mks_test import mkstest
# Generate two samples from a 5D Normal distribution
n = 100
d = 5
mu = np.zeros(d)
sigma = np.eye(d)
X = np.random.multivariate_normal(mu, sigma, n)
Y = np.random.multivariate_normal(mu, sigma, n)# Compute the test statistic
mkstest(X, Y, alpha=0.05, verbose=True)
# returns False - you can't reject that the two samples are drawn from the same distribution
```## Reference
If you find this code useful, you may cite the following paper:
```latex
@article{naaman2021tight,
title={On the tight constant in the multivariate Dvoretzky--Kiefer--Wolfowitz inequality},
author={Naaman, Michael},
journal={Statistics \& Probability Letters},
year={2021},
}
```