An open API service indexing awesome lists of open source software.

https://github.com/oaslananka/airsim101_yolov10

Autonomous Vehicle Control System using A* pathfinding, sensor data integration, and YOLO object detection in AirSim.
https://github.com/oaslananka/airsim101_yolov10

airsim autonomous-vehicle autonomousdriving autonomousvehicles deeplearning machinelearning microsoftai object-detection pathfinding python robotics simulation ultralytics vehiclecontrol yolo yolov10

Last synced: about 1 month ago
JSON representation

Autonomous Vehicle Control System using A* pathfinding, sensor data integration, and YOLO object detection in AirSim.

Awesome Lists containing this project

README

        

# Autonomous Vehicle Control System

This project demonstrates the control of an autonomous vehicle using A* pathfinding, sensor data integration, and object detection with YOLO. The system is designed to operate within a simulated environment provided by AirSim.

[![test](assests/test.png)](assests/test.mp4)

## Table of Contents

- [Introduction](#introduction)
- [Features](#features)
- [Installation](#installation)
- [Usage](#usage)
- [Project Structure](#project-structure)
- [Dependencies](#dependencies)

## Introduction

The Autonomous Vehicle Control System leverages A* pathfinding for navigation, integrates various sensor data for obstacle detection, and employs YOLO for object detection. The project aims to simulate autonomous vehicle behavior in a controlled environment.

## Features

- **A* Pathfinding Algorithm**: Efficient pathfinding from start to goal coordinates.
- **Sensor Data Integration**: Utilizes distance sensors to detect obstacles.
- **Object Detection**: Implements YOLOv5 for real-time object detection.
- **Pure Pursuit Control Algorithm**: Smooth path following for the vehicle.

## Installation

To set up the project, follow these steps:

1. **Clone the Repository**

```bash
git clone https://github.com/oaslananka/Airsim101_Yolov10.git
cd autonomous-vehicle-control
```

2. **Create a Virtual Environment**

```bash
python -m venv venv
source venv/bin/activate # On Windows use `venv\Scripts\activate`
```

3. **Install Dependencies**

```bash
pip install -r requirements.txt
```

4. **Install AirSim**

Follow the instructions to install [AirSim](https://github.com/microsoft/AirSim).

## Usage

1. **Configure AirSim**: Ensure AirSim is correctly set up and running.
2. **Run the Main Script**

```bash
python -m core.main
```

3. **Monitor Output**: The vehicle will start navigating the environment based on the defined path.

## Project Structure

```plaintext
autonomous-vehicle-control/

├── README.md
├── requirements.txt
├── setup.py

├── config/
│ ├── __init__.py
│ ├── coordinates.py
│ └── graph.py

├── core/
│ ├── __init__.py
│ ├── astar.py
│ ├── control.py
│ ├── main.py
│ └── sensors.py

├── utils/
│ ├── __init__.py
│ └── common.py

├── detection/
├── __init__.py
└── object_detection.py
```

## Dependencies

The project relies on several key libraries and frameworks:

- **numpy**: Fundamental package for scientific computing with Python.
- **opencv-python**: Library for computer vision.
- **ultralytics**: Implementation of the YOLO object detection model.
- **airsim**: Open-source simulator for autonomous vehicles from Microsoft AI & Research.

Install all dependencies using the provided \`requirements.txt\` file:

```bash
pip install -r requirements.txt
```

## Acknowledgments

- [AirSim](https://github.com/microsoft/AirSim) by Microsoft for the simulation environment.
- [Ultralytics YOLO](https://github.com/ultralytics) for the object detection model.