Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/oidiotlin/torchtracer

A python package for visualization and storage management in a pytorch AI task.
https://github.com/oidiotlin/torchtracer

lab machine-learning pytorch tools

Last synced: 17 days ago
JSON representation

A python package for visualization and storage management in a pytorch AI task.

Awesome Lists containing this project

README

        

# torchtracer

[![Build Status](https://travis-ci.com/OIdiotLin/torchtracer.svg?branch=master)](https://travis-ci.com/OIdiotLin/torchtracer)
![](https://img.shields.io/badge/python-3.6-blue.svg)
![](https://img.shields.io/badge/pytorch-0.4.1-orange.svg)

`torchtracer` is a tool package for visualization and storage management in pytorch AI task.

## Getting Started

### PyTorch Required

This tool is developed for PyTorch AI task. Thus, PyTorch is needed of course.

### Installing

You can use `pip` to install `torchtracer`.

```bash
pip install torchtracer
```

## How to use?

### Import `torchtracer`

```python
from torchtracer import Tracer
```

### Create an instance of `Tracer`

Assume that the root is `./checkpoints` and current task id is `lmmnb`.

***Avoiding messing working directory, you should make root directory manually.***

```python
tracer = Tracer('checkpoints').attach('lmmnb')
```

This step will create a directory `checkpoints` inside which is a directory `lmmnb` for current AI task.

Also, you could call `.attach()` without task id. **Datetime will be used as task id.**

```python
tracer = Tracer('checkpoints').attach()
```

### Saving config

Raw config should be a `dict` like this:

```python
# `net` is a defined nn.Module
args = {'epoch_n': 120,
'batch_size': 10,
'criterion': nn.MSELoss(),
'optimizer': torch.optim.RMSprop(net.parameters(), lr=1e-3)}
```

The config dict should be wrapped with `torchtracer.data.Config`

```python
cfg = Config(args)
tracer.store(cfg)
```

This step will create `config.json` in `./checkpoints/lmmnb/`, which contains JSON information like this:

```json
{
"epoch_n": 120,
"batch_size": 10,
"criterion": "MSELoss",
"optimizer": {
"lr": 0.001,
"momentum": 0,
"alpha": 0.99,
"eps": 1e-08,
"centered": false,
"weight_decay": 0,
"name": "RMSprop"
}
}
```

### Logging

During the training iteration, you could print any information you want by using `Tracer.log(msg, file)`.

If `file` not specified, it will output `msg` to `./checkpoints/lmmnb/log`. Otherwise, it will be `./checkpoints/lmmnb/something.log`.

```python
tracer.log(msg='Epoch #{:03d}\ttrain_loss: {:.4f}\tvalid_loss: {:.4f}'.format(epoch, train_loss, valid_loss),
file='losses')
```

This step will create a log file `losses.log` in `./checkpoints/lmmnb/`, which contains logs like:

```text
Epoch #001 train_loss: 18.6356 valid_loss: 21.3882
Epoch #002 train_loss: 19.1731 valid_loss: 17.8482
Epoch #003 train_loss: 19.6756 valid_loss: 19.1418
Epoch #004 train_loss: 20.0638 valid_loss: 18.3875
Epoch #005 train_loss: 18.4679 valid_loss: 19.6304
...
```

### Saving model

The model object should be wrapped with `torchtracer.data.Model`

If `file` not specified, it will generates model files `model.txt`. Otherwise, it will be `somename.txt`

```python
tracer.store(Model(model), file='somename')
```

This step will create 2 files:

- **description**: `somename.txt`

```text
Sequential
Sequential(
(0): Linear(in_features=1, out_features=6, bias=True)
(1): ReLU()
(2): Linear(in_features=6, out_features=12, bias=True)
(3): ReLU()
(4): Linear(in_features=12, out_features=12, bias=True)
(5): ReLU()
(6): Linear(in_features=12, out_features=1, bias=True)
)
```

- **parameters**: `somename.pth`

### Saving matplotlib images

Use `tracer.store(figure, file)` to save matplotlib figure in `images/`

```python
# assume that `train_losses` and `valid_losses` are lists of losses.
# create figure manually.
plt.plot(train_losses, label='train loss', c='b')
plt.plot(valid_losses, label='valid loss', c='r')
plt.title('Demo Learning on SQRT')
plt.legend()
# save figure. remember to call `plt.gcf()`
tracer.store(plt.gcf(), 'losses.png')
```

This step will save a png file `losses.png` representing losses curves.

### Progress bar for epochs

Use `tracer.epoch_bar_init(total)` to initialize a progress bar.

```python
tracer.epoch_bar_init(epoch_n)
```

Use `tracer.epoch_bar.update(n=1, **params)` to update postfix of the progress bar.

```python
tracer.epoch_bar.update(train_loss=train_loss, valid_loss=train_loss)
```

```plain
(THIS IS A DEMO)
Tracer start at /home/oidiotlin/projects/torchtracer/checkpoints
Tracer attached with task: rabbit
Epoch: 100%|█████████| 120/120 [00:02<00:00, 41.75it/s, train_loss=0.417, valid_loss=0.417]
```

**DO NOT FORGET TO CALL** `tracer.epoch_bar.close()` to finish the bar.

## Contribute

If you like this project, welcome to pull request & create issues.