https://github.com/oleksiym/data_science
https://github.com/oleksiym/data_science
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/oleksiym/data_science
- Owner: OleksiyM
- Created: 2024-04-11T14:38:29.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-08-03T12:55:47.000Z (11 months ago)
- Last Synced: 2024-08-03T18:39:50.022Z (11 months ago)
- Language: Jupyter Notebook
- Size: 79.4 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Data Science Python 18 Course lectures and homeworks
## Module 12. NLP fundamentals
### Lectures
* [Lecture_23](Lectures%2F12%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_23.ipynb)
* [Lecture_24](Lectures%2F12%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_24.ipynb)### Homework
* [Hw12.ipynb](Module_12%2FHw12.ipynb)
## Module 11. Recurrent neural networks (RNN)
### Lectures
* [Lecture_21](Lectures%2F11%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_21.ipynb)
* [Lecture_22](Lectures%2F11%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_22.ipynb)### Homework
* [Hw11.ipynb](Module_11%2FHw11.ipynb)
## Module 10. Convolutional neural networks (CNNs)
### Lectures
* [Lecture_19](Lectures%2F10%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_19.ipynb)
* [Lecture_20](Lectures%2F10%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_20.ipynb)
* [Lecture_20 updated](Lectures%2F10%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_20%20%281%29.ipynb)### Homework
* [Hw10.ipynb](Module_10%2FHw10.ipynb)
* [Hw10_last_test.ipynb](Module_10%2FHw10_last_best.ipynb)## Module 9. Adjusting the hyperparameters of the neural network
### Lectures
* [Lecture_17](Lectures%2F09%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_17.ipynb)
* [Lecture_18](Lectures%2F09%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_18.ipynb)
* [Lecture_18_practice_IMDB](Lectures%2F09%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F18_%D0%BF%D1%80%D0%B0%D0%BA%D1%82%D0%B8%D0%BA%D0%B0_IMDB.ipynb)### Homework
* [Hw9.ipynb](Module_09%2FHw9.ipynb)
* [Hw9_last_best.ipynb](Module_09%2FHw9_last_best.ipynb)## Module 8. Deep learning. Tensorflow
### Lectures
* [Lecture_15](Lectures%2F08%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_15.ipynb)
* [Lecture_16](Lectures%2F08%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_16.ipynb)### Homework
* [HW8.ipynb](Module_08%2FHW8.ipynb)
## Module 7. Recommendation systems
### Lectures
* [Lecture_13](Lectures%2F07%2F01%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_13%202.ipynb)
* [Lecture_14](Lectures%2F07%2F02%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_14.ipynb)### Homework
* [HW7.ipynb](Module_07%2FHW7.ipynb)
* [surprise_recommender.ipynb](Module_07%2Fsurprise_recommender.ipynb)## Module 6. Machine Learning without a teacher (Unsupervised Learning)
### Lectures
* [Lecture_11](Lectures%2F06%2F01%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_11.ipynb)
* [Lecture_12](Lectures%2F06%2F02%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_12.ipynb)### Homework
* [Hw6.ipynb](Module_06%2FHw6.ipynb)
## Module 5. Other machine learning algorithms with a teacher
### Lectures
* [Lecture_9](Lectures%2F05%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_9.ipynb)
* [Lecture_10](Lectures%2F05%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_10.ipynb)### Homework
* [Hw5.ipynb](Module_05%2FHw5.ipynb)
## Module 4. Classification and evaluation of the model
### Lectures
* [Lecture_7](Lectures%2F04%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_7%202.ipynb)
* [Lecture_8](Lectures%2F04%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_8.ipynb)
* [Lecture_8_practice](Lectures%2F04%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_8_%D0%BF%D1%80%D0%B0%D0%BA%D1%82%D0%B8%D0%BA%D0%B0.ipynb)### Homework
* [Hw4.ipynb](Module_04%2FHw4.ipynb)
## Module 3. Classic machine learning
### Lectures
* [Lecture_5](Lectures%2F03%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_5.ipynb)
* [Lecture_6](Lectures%2F03%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_6.ipynb)### Homework
* [Hw3.ipynb](Module_03%2FHw3.ipynb)
## Module 2. Exploratory data analysis
### Lectures
* [Lecture_3](Lectures%2F02%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_2_1.ipynb)
* [Lecture_4](Lectures%2F02%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_2_2.ipynb)
### Homework
* [Hw2.1.ipynb](https://github.com/OleksiyM/Data_Science/blob/main/Module_02/Hw2.1.ipynb)
* [Hw2.2.ipynb](https://github.com/OleksiyM/Data_Science/blob/main/Module_02/Hw2.2.ipynb)
* [Hw2.3.ipynb](https://github.com/OleksiyM/Data_Science/blob/main/Module_02/Hw2.3.ipynb)## Module 1. Introduction to Data Science
### Lectures
* [Lectures_1_2](Lectures%2F01%2F%D0%9B%D0%B5%D0%BA%D1%86%D1%96%D1%8F_1_2.ipynb)
### Homework
* [Hw1.ipynb](Module_01%2FHw1.ipynb)