Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/oliver-batchelor/segmentation

Image segmentation using pytorch.
https://github.com/oliver-batchelor/segmentation

convolutional-neural-networks machinine-learning pytorch segmentation

Last synced: about 1 month ago
JSON representation

Image segmentation using pytorch.

Awesome Lists containing this project

README

        

# Segmentation dataset

Make sure to checkout with --recurse-submodules, there's a submodule 'tools' for common bits and pieces)
It loads a folder full of images and masks (pixel value corresponds to class) with a config file.

An example dataset to train on can be found at:
https://drive.google.com/file/d/0B_mOCEqr7usZa2hra0xZUTJscE0/view

Or classes/images from the COCO/Pascal VOC dataset can be imported from scripts in the import/ folder.

# View the training or testing set and mask annotations:
`python -m dataset.view --input /path/to/dataset --train (or --test)`

Useful to check the preprocessing of images.

# View a mask file
`python view_labels.py some/file.jpg.mask`

# Train a model:
`python main.py --lr 0.1 --batch_size 4 --input /path/to/dataset --model "unet --depth 5" --epoch_size 1024`

## Common options:
`--load`, load from a previous checkpoint and cointunue training
`--model`, specify model and model parameters (use quotes)
`--show`, show results of evaluating the model in training (sanity check)

# Evaluate a model on new image(s):
`python test.py --batch /path/to/images --model log/model.pth --save results_path` (and/or `--show`)
`python test.py --image /my/image.jpg --model log/model.pth --show`