https://github.com/oliversheridanmethven/pyarv
Python bindings of approximate random variables
https://github.com/oliversheridanmethven/pyarv
approximation c high-performance-computing monte-carlo numerical-analysis numerical-methods python random-number-generators
Last synced: 25 days ago
JSON representation
Python bindings of approximate random variables
- Host: GitHub
- URL: https://github.com/oliversheridanmethven/pyarv
- Owner: oliversheridanmethven
- License: mit
- Created: 2024-09-03T10:01:50.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2025-05-11T13:46:48.000Z (9 months ago)
- Last Synced: 2025-10-27T18:28:43.253Z (4 months ago)
- Topics: approximation, c, high-performance-computing, monte-carlo, numerical-analysis, numerical-methods, python, random-number-generators
- Language: Python
- Homepage: https://oliversheridanmethven.github.io/pyarv/
- Size: 40.6 MB
- Stars: 11
- Watchers: 1
- Forks: 0
- Open Issues: 18
-
Metadata Files:
- Readme: README.md
- Contributing: contributing/index.md
- License: LICENSE.md
Awesome Lists containing this project
README
# PyARV
Python wrapper of a C implementation of
approximate random variables as detailed in:
>Michael B. Giles and Oliver Sheridan-Methven.
> _Approximating
inverse cumulative distribution functions to produce
approximate random variables._
> ACM Transactions
on Mathematical Software, 49(3), Article 26, September 2023, 29 pages.
> [https://doi.org/10.1145/3604935](https://doi.org/10.1145/3604935)
For projects using this package, please cite the ACM TOMS paper.
## Authors
Dr Oliver Sheridan-Methven
[oliver.sheridan-methven@hotmail.co.uk](mailto:oliver.sheridan-methven@hotmail.co.uk)
## Documentation
The full documentation can be found here: [Documentation](https://oliversheridanmethven.github.io/pyarv/).