Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/olk/mnist-performance
performance test of MNIST hand writings usign MXNet + TF
https://github.com/olk/mnist-performance
classification gluon horovod keras mirrored-strategy mnist model-parallelism multi-gpu multi-gpu-training mxnet python tensorflow
Last synced: 7 days ago
JSON representation
performance test of MNIST hand writings usign MXNet + TF
- Host: GitHub
- URL: https://github.com/olk/mnist-performance
- Owner: olk
- License: gpl-3.0
- Created: 2019-12-30T23:09:29.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-01-31T16:41:24.000Z (about 5 years ago)
- Last Synced: 2024-12-04T22:10:28.672Z (2 months ago)
- Topics: classification, gluon, horovod, keras, mirrored-strategy, mnist, model-parallelism, multi-gpu, multi-gpu-training, mxnet, python, tensorflow
- Language: Python
- Size: 22.5 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# MNIST performance tests
The projects tests the performance of MXNet and Tensorflow using MNIST data.
## project structure
├── LICENSE
├── README.md <- Top-level README for developers using this project
├── mnist_mx_gluon.py <- MXNet + Gluon
├── mnist_mx_gluon_mgpu.py <- MXNet + Gluon + multi-gpu
├── mnist_mx_gluon_hvd.py <- MXNet + Gluon + Horovod
├── mnist_mx_keras.py <- MXNet + Keras
├── mnist_mx_keras_mgpu.py <- MXNet + Keras + multi-gpu (multi_gpu_model())
├── mnist_mx_sym.py <- MXNet + symbol/module API
├── mnist_mx_sym_mgpu.py <- MXNet + symbol/module API + multi-gpu
├── mnist_tf_keras.py <- Tensorflow + Keras
└── mnist_tf_keras_mirrored.py <- Tensorflow + Keras + multi-gpu (MirroredStrategy())### MXNet Info
Version : 1.5.1
Directory : /home/graemer/Projekte/MXNet/apache-mxnet-src-1.5.1-incubating/python/mxnet
Num GPUs : 2### System Info
system : Linux
node : e5lx
release : 5.4.3-arch1-1
version : #1 SMP PREEMPT Fri, 13 Dec 2019 09:39:02 +0000### Hardware Info
Architektur: x86_64
CPU Operationsmodus: 32-bit, 64-bit
Byte-Reihenfolge: Little Endian
Adressgrößen: 46 bits physical, 48 bits virtual
CPU(s): 32
Liste der Online-CPU(s): 0-31
Thread(s) pro Kern: 2
Kern(e) pro Socket: 8
Sockel: 2
NUMA-Knoten: 2
Anbieterkennung: GenuineIntel
Prozessorfamilie: 6
Modell: 79
Modellname: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
Stepping: 1
CPU MHz: 1197.887
Maximale Taktfrequenz der CPU: 3000,0000
Minimale Taktfrequenz der CPU: 1200,0000
BogoMIPS: 4192.42
Virtualisierung: VT-x
L1d Cache: 512 KiB
L1i Cache: 512 KiB
L2 Cache: 4 MiB
L3 Cache: 40 MiB
NUMA-Knoten0 CPU(s): 0-7,16-23
NUMA-Knoten1 CPU(s): 8-15,24-31## test results
multigpu [[Horovod]] (2 GPUs): `horovodrun -np 2 -H localhost:2 python mnist_mx_gluon_hvd.py`
| framework | duration | accuracy |
|---------------------------|----------|----------|
| mnist_mx_gluon.py | 14.2s | 0.9926 |
| mnist_mx_keras.py | 16.4s | 0.9931 |
| mnist_mx_sym.py | 16.8s | 0.9924 |
| mnist_tf_keras.py | 17.6s | 0.9932 |
| mnist_mx_gluon_ds.py | 17.6s | 0.9902 |
| | | |
| mnist_mx_gluon_mgpu.py | 7.2s | 0.9926 |
| mnist_mx_gluon_hvd.py | 9.0s | 0.9963 |
| mnist_mx_sym_mgpu.py | 10.9s | 0.9923 |
| mnist_mx_keras_mgpu.py | 11.4s | 0.9927 |
| mnist_tf_keras_mgpu.py | 12.7s | 0.9921 |
| mnist_mx_gluon_ds_mgpu.py | 15.2s | 0.9906 |