Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/omadson/fuzzy-c-means
A simple python implementation of Fuzzy C-means algorithm.
https://github.com/omadson/fuzzy-c-means
clustering clustering-algorithm clustering-methods clusterization fuzzy fuzzy-clustering fuzzy-cmeans-clustering hacktoberfest
Last synced: 7 days ago
JSON representation
A simple python implementation of Fuzzy C-means algorithm.
- Host: GitHub
- URL: https://github.com/omadson/fuzzy-c-means
- Owner: omadson
- License: mit
- Created: 2019-05-13T16:29:01.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-07-15T19:24:40.000Z (4 months ago)
- Last Synced: 2024-10-20T05:14:25.537Z (17 days ago)
- Topics: clustering, clustering-algorithm, clustering-methods, clusterization, fuzzy, fuzzy-clustering, fuzzy-cmeans-clustering, hacktoberfest
- Language: Python
- Homepage: https://fuzzy-c-means.rtfd.io
- Size: 7.64 MB
- Stars: 173
- Watchers: 2
- Forks: 43
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
# fuzzy-c-means
![GitHub](https://img.shields.io/github/license/omadson/fuzzy-c-means.svg)
[![PyPI](https://img.shields.io/pypi/v/fuzzy-c-means.svg)](http://pypi.org/project/fuzzy-c-means/)
[![Documentation Status](https://readthedocs.org/projects/fuzzy-c-means/badge/?version=latest)](https://fuzzy-c-means.readthedocs.io/en/latest/?badge=latest)
[![GitHub last commit](https://img.shields.io/github/last-commit/omadson/fuzzy-c-means.svg)](https://github.com/omadson/fuzzy-c-means/commit/master)
[![Downloads](https://pepy.tech/badge/fuzzy-c-means)](https://pepy.tech/project/fuzzy-c-means)
[![DOI](https://zenodo.org/badge/186457481.svg)](https://zenodo.org/badge/latestdoi/186457481)**[Documentation](https://fuzzy-c-means.readthedocs.io/)** | **[Changelog](https://fuzzy-c-means.readthedocs.io/en/latest/CHANGELOG/)** | **[Citation](https://fuzzy-c-means.readthedocs.io/en/latest/citation/)**
`fuzzy-c-means` is a Python module implementing the [Fuzzy C-means][1] clustering algorithm.
## installation
the `fuzzy-c-means` package is available in [PyPI](https://pypi.org/project/fuzzy-c-means/). to install, simply type the following command:
```
pip install fuzzy-c-means
```
## citation
if you use `fuzzy-c-means` package in your paper, please cite it in your publication.
```
@software{dias2019fuzzy,
author = {Madson Luiz Dantas Dias},
title = {fuzzy-c-means: An implementation of Fuzzy $C$-means clustering algorithm.},
month = may,
year = 2019,
publisher = {Zenodo},
doi = {10.5281/zenodo.3066222},
url = {https://git.io/fuzzy-c-means}
}
```## contributing and support
this project is open for contributions. here are some of the ways for you to contribute:
- bug reports/fix
- features requests
- use-case demonstrationsplease open an [issue](https://github.com/omadson/fuzzy-c-means/issues) with enough information for us to reproduce your problem. A [minimal, reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) would be very helpful.
to make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a pull request!
[1]: https://doi.org/10.1016/0098-3004(84)90020-7
[2]: http://scikit-learn.org/