Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/omimo/pymo

A library for machine learning research on motion capture data
https://github.com/omimo/pymo

library machine-learning mocap motion-capture python scikit-learn

Last synced: 1 day ago
JSON representation

A library for machine learning research on motion capture data

Awesome Lists containing this project

README

        

# PyMO
A library for using motion capture data for machine learning

**This library is currently highly experimental and everything is subject to change :)**

## Roadmap
* Mocap Data Parsers and Writers
* Common mocap pre-processing algorithms
* Feature extraction library
* Visualization tools

## Current Features
* [Read BVH Files](#read-bvh-files)
* Write BVH Files
* Pre-processing pipelines
* [Supporting `scikit-learn` API](#scikit-learn-pipeline-api)
* Convert data representations
* [Euler angles to positions](#convert-to-positions)
* Euler angles to exponential maps
* Exponential maps to euler angles
* Body-oriented global translation and rotation calculation with inverse tranform
* Root-centric position normalizer with inverse tranform
* Standard scaler
* Joint selectors
* Visualization tools
* [Skeleton hierarchy](#get-skeleton-info)
* [2D frame visualization](#visualize-a-single-2d-frame)
* [3D webgl-based animation](#animate-in-3d-inside-a-jupyter-notebook)
* Annotations
* Foot/ground contact detector

### Read BVH Files

```python
from pymo.parsers import BVHParser

parser = BVHParser()

parsed_data = parser.parse('demos/data/AV_8Walk_Meredith_HVHA_Rep1.bvh')
```

### Get Skeleton Info

```python
from pymo.viz_tools import *

print_skel(parsed_data)
```
Will print the skeleton hierarchy:
```
- Hips (None)
| | - RightUpLeg (Hips)
| | - RightLeg (RightUpLeg)
| | - RightFoot (RightLeg)
| | - RightToeBase (RightFoot)
| | - RightToeBase_Nub (RightToeBase)
| - LeftUpLeg (Hips)
| - LeftLeg (LeftUpLeg)
| - LeftFoot (LeftLeg)
| - LeftToeBase (LeftFoot)
| - LeftToeBase_Nub (LeftToeBase)
- Spine (Hips)
| | - RightShoulder (Spine)
| | - RightArm (RightShoulder)
| | - RightForeArm (RightArm)
| | - RightHand (RightForeArm)
| | | - RightHand_End (RightHand)
| | | - RightHand_End_Nub (RightHand_End)
| | - RightHandThumb1 (RightHand)
| | - RightHandThumb1_Nub (RightHandThumb1)
| - LeftShoulder (Spine)
| - LeftArm (LeftShoulder)
| - LeftForeArm (LeftArm)
| - LeftHand (LeftForeArm)
| | - LeftHand_End (LeftHand)
| | - LeftHand_End_Nub (LeftHand_End)
| - LeftHandThumb1 (LeftHand)
| - LeftHandThumb1_Nub (LeftHandThumb1)
- Head (Spine)
- Head_Nub (Head)
```

### scikit-learn Pipeline API

```python

from pymo.preprocessing import *
from sklearn.pipeline import Pipeline

data_pipe = Pipeline([
('param', MocapParameterizer('position')),
('rcpn', RootCentricPositionNormalizer()),
('delta', RootTransformer('abdolute_translation_deltas')),
('const', ConstantsRemover()),
('np', Numpyfier()),
('down', DownSampler(2)),
('stdscale', ListStandardScaler())
])

piped_data = data_pipe.fit_transform([parsed_data])
```

### Convert to Positions

```python
mp = MocapParameterizer('position')

positions = mp.fit_transform([parsed_data])
```

### Visualize a single 2D Frame

```python
draw_stickfigure(positions[0], frame=10)
```

![2D Skeleton Viz](assets/viz_skel_2d.png)

### Animate in 3D (inside a Jupyter Notebook)

```python
nb_play_mocap(positions[0], 'pos',
scale=2, camera_z=800, frame_time=1/120,
base_url='pymo/mocapplayer/playBuffer.html')
```

![Mocap Player](assets/mocap_player.png)

### Foot/Ground Contact Detector
```python
from pymo.features import *

plot_foot_up_down(positions[0], 'RightFoot_Yposition')
```

![Foot Contact](assets/foot_updown.png)

```python
signal = create_foot_contact_signal(positions[0], 'RightFoot_Yposition')
plt.figure(figsize=(12,5))
plt.plot(signal, 'r')
plt.plot(positions[0].values['RightFoot_Yposition'].values, 'g')
```

![Foot Contact Signal](assets/footcontact_signal.png)

## Feedback, Bugs, and Questions
For any questions, feedback, and bug reports, please use the [Github Issues](https://github.com/omimo/PyMO/issues).

## Credits
Created by [Omid Alemi](https://omid.al/projects/)

## License
This code is available under the [MIT license](http://opensource.org/licenses/MIT).