Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/onlytailei/Value-Iteration-Networks-PyTorch
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)
https://github.com/onlytailei/Value-Iteration-Networks-PyTorch
Last synced: 29 days ago
JSON representation
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)
- Host: GitHub
- URL: https://github.com/onlytailei/Value-Iteration-Networks-PyTorch
- Owner: onlytailei
- Created: 2017-03-13T10:04:39.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2017-03-13T13:46:31.000Z (almost 8 years ago)
- Last Synced: 2024-05-22T07:52:35.272Z (7 months ago)
- Language: Python
- Homepage:
- Size: 431 KB
- Stars: 78
- Watchers: 5
- Forks: 23
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# [Value Iteration Networks](https://arxiv.org/abs/1602.02867) in PyTorch
> Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. _Value Iteration Networks_. Neural Information Processing Systems (NIPS) 2016
This repository contains an implementation of Value Iteration Networks (VIN) in PyTorch based on the original [Theano implementation](https://github.com/avivt/VIN) by the authors and the [TensoFlow implementation](https://github.com/TheAbhiKumar/tensorflow-value-iteration-networks) by [Abhishek Kumar](https://github.com/TheAbhiKumar/tensorflow-value-iteration-networks).
VIN won the Best Paper Award at NIPS 2016.
![Value Iteration Network and Module](img/vin.png)
## Dependencies
* Python 2.7
* PyTorch
* SciPy >= 0.18.1 (to load the data)## Datasets
- The datasets is from the [author's repository](https://github.com/avivt/VIN/tree/master/data). This repository contains the 8x8 GridWorld dataset for convenience and its small size.
- utils.py and data.py are from [Abhishek Kumar's repository](https://github.com/TheAbhiKumar/tensorflow-value-iteration-networks)## Training
```
python train_main.py
```Several arguments can be set in train_main.py like learning rate. Please check train_main.py for details.
```
python train_main.py --lr 0.001
```## References
* [Value Iteration Networks on arXiv](https://arxiv.org/abs/1602.02867)
* [Aviv Tamar's (author) implementation in Theano](https://github.com/avivt/VIN)
* [Abhishek Kumar's implementation in TensorFlow](https://github.com/TheAbhiKumar/tensorflow-value-iteration-networks).