Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/open-mmlab/mmdeploy
OpenMMLab Model Deployment Framework
https://github.com/open-mmlab/mmdeploy
computer-vision deep-learning deployment mmdetection mmsegmentation model-converter ncnn onnx onnxruntime openvino pplnn pytorch sdk tensorrt
Last synced: 7 days ago
JSON representation
OpenMMLab Model Deployment Framework
- Host: GitHub
- URL: https://github.com/open-mmlab/mmdeploy
- Owner: open-mmlab
- License: apache-2.0
- Created: 2021-12-24T13:04:44.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-09-30T02:34:18.000Z (3 months ago)
- Last Synced: 2024-12-16T22:06:02.388Z (14 days ago)
- Topics: computer-vision, deep-learning, deployment, mmdetection, mmsegmentation, model-converter, ncnn, onnx, onnxruntime, openvino, pplnn, pytorch, sdk, tensorrt
- Language: Python
- Homepage: https://mmdeploy.readthedocs.io/en/latest/
- Size: 13.2 MB
- Stars: 2,794
- Watchers: 37
- Forks: 643
- Open Issues: 409
-
Metadata Files:
- Readme: README.md
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE
- Code of conduct: .github/CODE_OF_CONDUCT.md
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-list - MMDeploy - OpenMMLab Model Deployment Framework (Computer Vision / General Purpose CV)
README
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdeploy.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmdeploy/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdeploy/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdeploy/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdeploy)
[![license](https://img.shields.io/github/license/open-mmlab/mmdeploy.svg)](https://github.com/open-mmlab/mmdeploy/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/open-mmlab/mmdeploy)](https://github.com/open-mmlab/mmdeploy/issues)
[![open issues](https://img.shields.io/github/issues-raw/open-mmlab/mmdeploy)](https://github.com/open-mmlab/mmdeploy/issues)English | [简体中文](README_zh-CN.md)
## Highlights
The MMDeploy 1.x has been released, which is adapted to upstream codebases from OpenMMLab 2.0. Please **align the version** when using it.
The default branch has been switched to `main` from `master`. MMDeploy 0.x (`master`) will be deprecated and new features will only be added to MMDeploy 1.x (`main`) in future.| mmdeploy | mmengine | mmcv | mmdet | others |
| :------: | :------: | :------: | :------: | :----: |
| 0.x.y | - | \<=1.x.y | \<=2.x.y | 0.x.y |
| 1.x.y | 0.x.y | 2.x.y | 3.x.y | 1.x.y |[deploee](https://platform.openmmlab.com/deploee/) offers over 2,300 AI models in ONNX, NCNN, TRT and OpenVINO formats. Featuring a built-in list of real hardware devices, deploee enables users to convert Torch models into any target inference format for profiling purposes.
## Introduction
MMDeploy is an open-source deep learning model deployment toolset. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
## Main features
### Fully support OpenMMLab models
The currently supported codebases and models are as follows, and more will be included in the future
- [mmpretrain](docs/en/04-supported-codebases/mmpretrain.md)
- [mmdet](docs/en/04-supported-codebases/mmdet.md)
- [mmseg](docs/en/04-supported-codebases/mmseg.md)
- [mmagic](docs/en/04-supported-codebases/mmagic.md)
- [mmocr](docs/en/04-supported-codebases/mmocr.md)
- [mmpose](docs/en/04-supported-codebases/mmpose.md)
- [mmdet3d](docs/en/04-supported-codebases/mmdet3d.md)
- [mmrotate](docs/en/04-supported-codebases/mmrotate.md)
- [mmaction2](docs/en/04-supported-codebases/mmaction2.md)### Multiple inference backends are available
The supported Device-Platform-InferenceBackend matrix is presented as following, and more will be compatible.
The benchmark can be found from [here](docs/en/03-benchmark/benchmark.md)
Device /
Platform
Linux
Windows
macOS
Android
x86_64
CPU
onnxruntime
pplnn
ncnn
LibTorch
OpenVINO
TVM
onnxruntime
OpenVINO
ncnn
-
-
NVIDIA
GPU
onnxruntime
TensorRT
LibTorch
pplnn
onnxruntime
TensorRT
-
-
NVIDIA
Jetson
TensorRT
-
-
-
### Efficient and scalable C/C++ SDK Framework
All kinds of modules in the SDK can be extended, such as `Transform` for image processing, `Net` for Neural Network inference, `Module` for postprocessing and so on
## [Documentation](https://mmdeploy.readthedocs.io/en/latest/)
Please read [getting_started](docs/en/get_started.md) for the basic usage of MMDeploy. We also provide tutoials about:
- [Build](docs/en/01-how-to-build/build_from_source.md)
- [Build from Docker](docs/en/01-how-to-build/build_from_docker.md)
- [Build from Script](docs/en/01-how-to-build/build_from_script.md)
- [Build for Linux](docs/en/01-how-to-build/linux-x86_64.md)
- [Build for macOS](docs/en/01-how-to-build/macos-arm64.md)
- [Build for Win10](docs/en/01-how-to-build/windows.md)
- [Build for Android](docs/en/01-how-to-build/android.md)
- [Build for Jetson](docs/en/01-how-to-build/jetsons.md)
- [Build for SNPE](docs/en/01-how-to-build/snpe.md)
- [Cross Build for aarch64](docs/en/01-how-to-build/cross_build_ncnn_aarch64.md)
- User Guide
- [How to convert model](docs/en/02-how-to-run/convert_model.md)
- [How to write config](docs/en/02-how-to-run/write_config.md)
- [How to profile model](docs/en/02-how-to-run/profile_model.md)
- [How to quantize model](docs/en/02-how-to-run/quantize_model.md)
- [Useful tools](docs/en/02-how-to-run/useful_tools.md)
- Developer Guide
- [Architecture](docs/en/07-developer-guide/architecture.md)
- [How to support new models](docs/en/07-developer-guide/support_new_model.md)
- [How to support new backends](docs/en/07-developer-guide/support_new_backend.md)
- [How to partition model](docs/en/07-developer-guide/partition_model.md)
- [How to test rewritten model](docs/en/07-developer-guide/test_rewritten_models.md)
- [How to test backend ops](docs/en/07-developer-guide/add_backend_ops_unittest.md)
- [How to do regression test](docs/en/07-developer-guide/regression_test.md)
- Custom Backend Ops
- [ncnn](docs/en/06-custom-ops/ncnn.md)
- [ONNXRuntime](docs/en/06-custom-ops/onnxruntime.md)
- [tensorrt](docs/en/06-custom-ops/tensorrt.md)
- [FAQ](docs/en/faq.md)
- [Contributing](.github/CONTRIBUTING.md)## Benchmark and Model zoo
You can find the supported models from [here](docs/en/03-benchmark/supported_models.md) and their performance in the [benchmark](docs/en/03-benchmark/benchmark.md).
## Contributing
We appreciate all contributions to MMDeploy. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
## Acknowledgement
We would like to sincerely thank the following teams for their contributions to [MMDeploy](https://github.com/open-mmlab/mmdeploy):
- [OpenPPL](https://github.com/openppl-public)
- [OpenVINO](https://github.com/openvinotoolkit/openvino)
- [ncnn](https://github.com/Tencent/ncnn)## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@misc{=mmdeploy,
title={OpenMMLab's Model Deployment Toolbox.},
author={MMDeploy Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmdeploy}},
year={2021}
}
```## License
This project is released under the [Apache 2.0 license](LICENSE).
## Projects in OpenMMLab
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MMPretrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [Playground](https://github.com/open-mmlab/playground): A central hub for gathering and showcasing amazing projects built upon OpenMMLab.