Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/open-mmlab/multimodal-gpt
Multimodal-GPT
https://github.com/open-mmlab/multimodal-gpt
flamingo gpt gpt-4 llama multimodal transformer vision-and-language
Last synced: 29 days ago
JSON representation
Multimodal-GPT
- Host: GitHub
- URL: https://github.com/open-mmlab/multimodal-gpt
- Owner: open-mmlab
- License: apache-2.0
- Created: 2023-04-26T09:54:07.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-06-04T01:42:37.000Z (over 1 year ago)
- Last Synced: 2024-10-10T05:38:39.793Z (29 days ago)
- Topics: flamingo, gpt, gpt-4, llama, multimodal, transformer, vision-and-language
- Language: Python
- Homepage:
- Size: 109 KB
- Stars: 1,467
- Watchers: 12
- Forks: 123
- Open Issues: 19
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-ChatGPT-repositories - Multimodal-GPT - Multimodal-GPT (Langchain)
README
# ๐ค Multi-modal GPT
Train a multi-modal chatbot with visual and language instructions!
Based on the open-source multi-modal model [OpenFlamingo](https://github.com/mlfoundations/open_flamingo), we create various **visual instruction** data with open datasets, including VQA, Image Captioning, Visual Reasoning, Text OCR, and Visual Dialogue. Additionally, we also train the language model component of OpenFlamingo using only **language-only instruction** data.
The **joint training** of visual and language instructions effectively improves the performance of the model! For more details please refer to our [technical report](https://arxiv.org/abs/2305.04790).
Welcome to join us!
English | [็ฎไฝไธญๆ](README_zh-CN.md)
## Features
- Support various vision and language instruction data
- Parameter efficient fine-tuning with LoRA
- Tuning vision and language at the same time, complement each other## Installation
To install the package in an existing environment, run
```bash
git clone https://github.com/open-mmlab/Multimodal-GPT.git
cd Multimodal-GPT
pip install -r requirements.txt
pip install -v -e .
```or create a new conda environment
```bash
conda env create -f environment.yml
```## Launch Demo Locally
1. Download the pre-trained weights.
Use [this script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) for converting LLaMA weights to Hugging Face format.
Download the OpenFlamingo pre-trained model from [openflamingo/OpenFlamingo-9B](https://huggingface.co/openflamingo/OpenFlamingo-9B).
Download our LoRA Weight from [here](https://download.openmmlab.com/mmgpt/v0/mmgpt-lora-v0-release.pt).
Then place these models in `checkpoints` folders like this:
```
checkpoints
โโโ llama-7b_hf
โ โโโ config.json
โ โโโ pytorch_model-00001-of-00002.bin
โ โโโ ......
โ โโโ tokenizer.model
โโโ OpenFlamingo-9B
โ โโโcheckpoint.pt
โโโmmgpt-lora-v0-release.pt2. launch the gradio demo
```bash
python app.py
```## Examples
### Recipe:
![image4](https://user-images.githubusercontent.com/12907710/234554562-8f3be88f-d563-47ba-97d9-ade8d47c46b0.png)### Travel plan:
![image3](https://user-images.githubusercontent.com/12907710/234523464-80c4e3f0-f99f-4498-96ef-dc43ef89c64b.png)### Movie:
![image2](https://user-images.githubusercontent.com/12907710/234523468-e11905a6-491f-4b87-934f-90da7d14d1c3.png)### Famous person:
![image](https://user-images.githubusercontent.com/12907710/234523475-fd91f979-a344-4228-813f-6b55a1bc250f.png)## Fine-tuning
### Prepare datasets
1. [A-OKVQA](https://allenai.org/project/a-okvqa/home)
Download annotation from [this link](https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz) and unzip to `data/aokvqa/annotations`.
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
2. [COCO Caption](https://cs.stanford.edu/people/karpathy/deepimagesent/)
Download from [this link](https://cs.stanford.edu/people/karpathy/deepimagesent/coco.zip) and unzip to `data/coco`.
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
3. [OCR VQA](https://ocr-vqa.github.io/)
Download from [this link](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing) and place in `data/OCR_VQA/`.
4. [LlaVA](https://llava-vl.github.io/)
Download from [liuhaotian/LLaVA-Instruct-150K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) and place in `data/llava/`.
It also requires images from coco dataset which can be downloaded from [here](https://cocodataset.org/#home).
5. [Mini-GPT4](https://minigpt-4.github.io/)
Download from [Vision-CAIR/cc_sbu_align](https://huggingface.co/datasets/Vision-CAIR/cc_sbu_align) and place in `data/cc_sbu_align/`.
6. [Dolly 15k](https://www.databricks.com/blog/2023/03/24/hello-dolly-democratizing-magic-chatgpt-open-models.html)
Download from [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and place it in `data/dolly/databricks-dolly-15k.jsonl`.
7. [Alpaca GPT4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
Download it from [this link](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/raw/main/data/alpaca_gpt4_data.json) and place it in `data/alpaca_gpt4/alpaca_gpt4_data.json`.
You can also customize the data path in the [configs/dataset_config.py](configs/dataset_config.py).
8. [Baize](https://github.com/project-baize/baize-chatbot)
Download it from [this link](https://github.com/project-baize/baize-chatbot/blob/main/data/quora_chat_data.json) and place it in `data/baize/quora_chat_data.json`.
## Start training
```bash
torchrun --nproc_per_node=8 mmgpt/train/instruction_finetune.py \
--lm_path checkpoints/llama-7b_hf \
--tokenizer_path checkpoints/llama-7b_hf \
--pretrained_path checkpoints/OpenFlamingo-9B/checkpoint.pt \
--run_name train-my-gpt4 \
--learning_rate 1e-5 \
--lr_scheduler cosine \
--batch_size 1 \
--tuning_config configs/lora_config.py \
--dataset_config configs/dataset_config.py \
--report_to_wandb
```## Acknowledgements
- [OpenFlamingo](https://github.com/mlfoundations/open_flamingo)
- [LAVIS](https://github.com/salesforce/LAVIS)
- [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
- [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4)
- [LLaVA](https://github.com/haotian-liu/LLaVA/tree/main)
- [Instruction Tuning with GPT-4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)If you find our project useful for your research and applications, please cite using this BibTeX:
```bibtex
@misc{gong2023multimodalgpt,
title={MultiModal-GPT: A Vision and Language Model for Dialogue with Humans},
author={Tao Gong and Chengqi Lyu and Shilong Zhang and Yudong Wang and Miao Zheng and Qian Zhao and Kuikun Liu and Wenwei Zhang and Ping Luo and Kai Chen},
year={2023},
eprint={2305.04790},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```