Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/open-mmlab/pia
[CVPR 2024] PIA, your Personalized Image Animator. Animate your images by text prompt, combing with Dreambooth, achieving stunning videos. PIA,你的个性化图像动画生成器,利用文本提示将图像变为奇妙的动画
https://github.com/open-mmlab/pia
aigc animation diffusion-models image-to-video image-to-video-generation personalized-generation stable-diffusion
Last synced: 4 days ago
JSON representation
[CVPR 2024] PIA, your Personalized Image Animator. Animate your images by text prompt, combing with Dreambooth, achieving stunning videos. PIA,你的个性化图像动画生成器,利用文本提示将图像变为奇妙的动画
- Host: GitHub
- URL: https://github.com/open-mmlab/pia
- Owner: open-mmlab
- License: apache-2.0
- Created: 2023-12-21T03:29:34.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-08-05T09:11:48.000Z (6 months ago)
- Last Synced: 2025-01-10T16:05:15.386Z (11 days ago)
- Topics: aigc, animation, diffusion-models, image-to-video, image-to-video-generation, personalized-generation, stable-diffusion
- Language: Python
- Homepage: https://pi-animator.github.io/
- Size: 79 MB
- Stars: 933
- Watchers: 24
- Forks: 77
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# CVPR 2024 | PIA:Personalized Image Animator
[**PIA: Your Personalized Image Animator via Plug-and-Play Modules in Text-to-Image Models**](https://arxiv.org/abs/2312.13964)
[Yiming Zhang*](https://github.com/ymzhang0319), [Zhening Xing*](https://github.com/LeoXing1996/), [Yanhong Zeng†](https://zengyh1900.github.io/), [Youqing Fang](https://github.com/FangYouqing), [Kai Chen†](https://chenkai.site/)
(*equal contribution, †corresponding Author)
[![arXiv](https://img.shields.io/badge/arXiv-2312.13964-b31b1b.svg)](https://arxiv.org/abs/2312.13964)
[![Project Page](https://img.shields.io/badge/PIA-Website-green)](https://pi-animator.github.io)
[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/zhangyiming/PiaPia)
[![Third Party Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/PIA-colab/blob/main/PIA_colab.ipynb)
[![HuggingFace Model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue)](https://huggingface.co/Leoxing/PIA)
[![Replicate](https://replicate.com/cjwbw/pia/badge)](https://replicate.com/cjwbw/pia)PIA is a personalized image animation method which can generate videos with **high motion controllability** and **strong text and image alignment**.
If you find our project helpful, please give it a star :star: or [cite](#bibtex) it, we would be very grateful :sparkling_heart: .
## What's New
- [x] `2024/01/03` [Replicate Demo & API](https://replicate.com/cjwbw/pia) support!
- [x] `2024/01/03` [Colab](https://github.com/camenduru/PIA-colab) support from [camenduru](https://github.com/camenduru)!
- [x] `2023/12/28` Support `scaled_dot_product_attention` for 1024x1024 images with just 16GB of GPU memory.
- [x] `2023/12/25` HuggingFace demo is available now! [🤗 Hub](https://huggingface.co/spaces/Leoxing/PIA/)
- [x] `2023/12/22` Release the demo of PIA on [OpenXLab](https://openxlab.org.cn/apps/detail/zhangyiming/PiaPia) and checkpoints on [Google Drive](https://drive.google.com/file/d/1RL3Fp0Q6pMD8PbGPULYUnvjqyRQXGHwN/view?usp=drive_link) or [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/zhangyiming/PIA)## Setup
### Prepare EnvironmentUse the following command to install a conda environment for PIA from scratch:
```
conda env create -f pia.yml
conda activate pia
```
You may also want to install it based on an existing environment, then you can use `environment-pt2.yaml` for Pytorch==2.0.0. If you want to use lower version of Pytorch (e.g. 1.13.1), you can use the following command:```
conda env create -f environment.yaml
conda activate pia
```We strongly recommend you to use Pytorch==2.0.0 which supports `scaled_dot_product_attention` for memory-efficient image animation.
### Download checkpoints
```
conda install git-lfs
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 models/StableDiffusion/
```
```
git clone https://huggingface.co/Leoxing/PIA models/PIA/
```
```
bash download_bashscripts/1-RealisticVision.sh
bash download_bashscripts/2-RcnzCartoon.sh
bash download_bashscripts/3-MajicMix.sh
```
You can also download *pia.ckpt* manually through link on [Google Drive](https://drive.google.com/file/d/1RL3Fp0Q6pMD8PbGPULYUnvjqyRQXGHwN/view?usp=drive_link)
or [HuggingFace](https://huggingface.co/Leoxing/PIA).
Put checkpoints as follows:
```
└── models
├── DreamBooth_LoRA
│ ├── ...
├── PIA
│ ├── pia.ckpt
└── StableDiffusion
├── vae
├── unet
└── ...
```
## Inference
### Image Animation
Image to Video result can be obtained by:
```
python inference.py --config=example/config/lighthouse.yaml
python inference.py --config=example/config/harry.yaml
python inference.py --config=example/config/majic_girl.yaml
```
Run the command above, then you can find the results in example/result:
Input Image
lightning, lighthouse
sun rising, lighthouse
fireworks, lighthouse
Input Image
1boy smiling
1boy playing the magic fire
1boy is waving hands
Input Image
1girl is smiling
1girl is crying
1girl, snowing
### Motion Magnitude
You can control the motion magnitude through the parameter **magnitude**:
```sh
python inference.py --config=example/config/xxx.yaml --magnitude=0 # Small Motion
python inference.py --config=example/config/xxx.yaml --magnitude=1 # Moderate Motion
python inference.py --config=example/config/xxx.yaml --magnitude=2 # Large Motion
```
Examples:
```sh
python inference.py --config=example/config/labrador.yaml
python inference.py --config=example/config/bear.yaml
python inference.py --config=example/config/genshin.yaml
```
Input Image
& Prompt
Small Motion
Moderate Motion
Large Motion
a golden labrador is running
1bear is walking, ...
cherry blossom, ...
### Style Transfer
To achieve style transfer, you can run the command(*Please don't forget set the base model in xxx.yaml*):
Examples:
```sh
python inference.py --config example/config/concert.yaml --style_transfer
python inference.py --config example/config/anya.yaml --style_transfer
```
Input Image
& Base Model
1man is smiling
1man is crying
1man is singing
Realistic Vision
RCNZ Cartoon 3d
1girl smiling
1girl open mouth
1girl is crying, pout
RCNZ Cartoon 3d
### Loop Video
You can generate loop by using the parameter --loop
```sh
python inference.py --config=example/config/xxx.yaml --loop
```
Examples:
```sh
python inference.py --config=example/config/lighthouse.yaml --loop
python inference.py --config=example/config/labrador.yaml --loop
```
Input Image
lightning, lighthouse
sun rising, lighthouse
fireworks, lighthouse
Input Image
labrador jumping
labrador walking
labrador running
## Training
We provide [training script]("train.py") for PIA. It borrows from [AnimateDiff](https://github.com/guoyww/AnimateDiff/tree/main) heavily, so please prepare the dataset and configuration files according to the [guideline](https://github.com/guoyww/AnimateDiff/blob/main/__assets__/docs/animatediff.md#steps-for-training).
After preparation, you can train the model by running the following command using torchrun:
```shell
torchrun --nnodes=1 --nproc_per_node=1 train.py --config example/config/train.yaml
```
or by slurm,
```shell
srun --quotatype=reserved --job-name=pia --gres=gpu:8 --ntasks-per-node=8 --ntasks=8 --cpus-per-task=4 --kill-on-bad-exit=1 python train.py --config example/config/train.yaml
```
## AnimateBench
We have open-sourced AnimateBench on [HuggingFace](https://huggingface.co/datasets/ymzhang319/AnimateBench) which includes images, prompts and configs to evaluate PIA and other image animation methods.
## BibTex
```
@inproceedings{zhang2024pia,
title={Pia: Your personalized image animator via plug-and-play modules in text-to-image models},
author={Zhang, Yiming and Xing, Zhening and Zeng, Yanhong and Fang, Youqing and Chen, Kai},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7747--7756},
year={2024}
}
```
## Contact Us
**Yiming Zhang**: [email protected]
**Zhening Xing**: [email protected]
**Yanhong Zeng**: [email protected]
## Acknowledgements
The code is built upon [AnimateDiff](https://github.com/guoyww/AnimateDiff), [Tune-a-Video](https://github.com/showlab/Tune-A-Video) and [PySceneDetect](https://github.com/Breakthrough/PySceneDetect)