Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/open-mmlab/pia

[CVPR 2024] PIA, your Personalized Image Animator. Animate your images by text prompt, combing with Dreambooth, achieving stunning videos. PIA,你的个性化图像动画生成器,利用文本提示将图像变为奇妙的动画
https://github.com/open-mmlab/pia

aigc animation diffusion-models image-to-video image-to-video-generation personalized-generation stable-diffusion

Last synced: 4 days ago
JSON representation

[CVPR 2024] PIA, your Personalized Image Animator. Animate your images by text prompt, combing with Dreambooth, achieving stunning videos. PIA,你的个性化图像动画生成器,利用文本提示将图像变为奇妙的动画

Awesome Lists containing this project

README

        

# CVPR 2024 | PIA:Personalized Image Animator

[**PIA: Your Personalized Image Animator via Plug-and-Play Modules in Text-to-Image Models**](https://arxiv.org/abs/2312.13964)

[Yiming Zhang*](https://github.com/ymzhang0319), [Zhening Xing*](https://github.com/LeoXing1996/), [Yanhong Zeng†](https://zengyh1900.github.io/), [Youqing Fang](https://github.com/FangYouqing), [Kai Chen†](https://chenkai.site/)

(*equal contribution, †corresponding Author)

[![arXiv](https://img.shields.io/badge/arXiv-2312.13964-b31b1b.svg)](https://arxiv.org/abs/2312.13964)
[![Project Page](https://img.shields.io/badge/PIA-Website-green)](https://pi-animator.github.io)
[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/zhangyiming/PiaPia)
[![Third Party Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/PIA-colab/blob/main/PIA_colab.ipynb)
[![HuggingFace Model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue)](https://huggingface.co/Leoxing/PIA)

Open in HugginFace

[![Replicate](https://replicate.com/cjwbw/pia/badge)](https://replicate.com/cjwbw/pia)

PIA is a personalized image animation method which can generate videos with **high motion controllability** and **strong text and image alignment**.

If you find our project helpful, please give it a star :star: or [cite](#bibtex) it, we would be very grateful :sparkling_heart: .

## What's New
- [x] `2024/01/03` [Replicate Demo & API](https://replicate.com/cjwbw/pia) support!
- [x] `2024/01/03` [Colab](https://github.com/camenduru/PIA-colab) support from [camenduru](https://github.com/camenduru)!
- [x] `2023/12/28` Support `scaled_dot_product_attention` for 1024x1024 images with just 16GB of GPU memory.
- [x] `2023/12/25` HuggingFace demo is available now! [🤗 Hub](https://huggingface.co/spaces/Leoxing/PIA/)
- [x] `2023/12/22` Release the demo of PIA on [OpenXLab](https://openxlab.org.cn/apps/detail/zhangyiming/PiaPia) and checkpoints on [Google Drive](https://drive.google.com/file/d/1RL3Fp0Q6pMD8PbGPULYUnvjqyRQXGHwN/view?usp=drive_link) or [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/zhangyiming/PIA)

## Setup
### Prepare Environment

Use the following command to install a conda environment for PIA from scratch:

```
conda env create -f pia.yml
conda activate pia
```
You may also want to install it based on an existing environment, then you can use `environment-pt2.yaml` for Pytorch==2.0.0. If you want to use lower version of Pytorch (e.g. 1.13.1), you can use the following command:

```
conda env create -f environment.yaml
conda activate pia
```

We strongly recommend you to use Pytorch==2.0.0 which supports `scaled_dot_product_attention` for memory-efficient image animation.

### Download checkpoints

  • Download the Stable Diffusion v1-5
  • ```
    conda install git-lfs
    git lfs install
    git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 models/StableDiffusion/
    ```

  • Download PIA
  • ```
    git clone https://huggingface.co/Leoxing/PIA models/PIA/
    ```

  • Download Personalized Models
  • ```
    bash download_bashscripts/1-RealisticVision.sh
    bash download_bashscripts/2-RcnzCartoon.sh
    bash download_bashscripts/3-MajicMix.sh
    ```

    You can also download *pia.ckpt* manually through link on [Google Drive](https://drive.google.com/file/d/1RL3Fp0Q6pMD8PbGPULYUnvjqyRQXGHwN/view?usp=drive_link)
    or [HuggingFace](https://huggingface.co/Leoxing/PIA).

    Put checkpoints as follows:
    ```
    └── models
    ├── DreamBooth_LoRA
    │ ├── ...
    ├── PIA
    │ ├── pia.ckpt
    └── StableDiffusion
    ├── vae
    ├── unet
    └── ...
    ```

    ## Inference
    ### Image Animation
    Image to Video result can be obtained by:
    ```
    python inference.py --config=example/config/lighthouse.yaml
    python inference.py --config=example/config/harry.yaml
    python inference.py --config=example/config/majic_girl.yaml
    ```
    Run the command above, then you can find the results in example/result:


    Input Image


    lightning, lighthouse


    sun rising, lighthouse


    fireworks, lighthouse










    Input Image


    1boy smiling


    1boy playing the magic fire


    1boy is waving hands










    Input Image


    1girl is smiling


    1girl is crying


    1girl, snowing








    ### Motion Magnitude
    You can control the motion magnitude through the parameter **magnitude**:
    ```sh
    python inference.py --config=example/config/xxx.yaml --magnitude=0 # Small Motion
    python inference.py --config=example/config/xxx.yaml --magnitude=1 # Moderate Motion
    python inference.py --config=example/config/xxx.yaml --magnitude=2 # Large Motion
    ```
    Examples:

    ```sh
    python inference.py --config=example/config/labrador.yaml
    python inference.py --config=example/config/bear.yaml
    python inference.py --config=example/config/genshin.yaml
    ```


    Input Image
    & Prompt


    Small Motion


    Moderate Motion


    Large Motion




    a golden labrador is running





    1bear is walking, ...





    cherry blossom, ...



    ### Style Transfer
    To achieve style transfer, you can run the command(*Please don't forget set the base model in xxx.yaml*):

    Examples:

    ```sh
    python inference.py --config example/config/concert.yaml --style_transfer
    python inference.py --config example/config/anya.yaml --style_transfer
    ```


    Input Image
    & Base Model


    1man is smiling


    1man is crying


    1man is singing




    Realistic Vision





    RCNZ Cartoon 3d






    1girl smiling


    1girl open mouth


    1girl is crying, pout




    RCNZ Cartoon 3d



    ### Loop Video

    You can generate loop by using the parameter --loop

    ```sh
    python inference.py --config=example/config/xxx.yaml --loop
    ```

    Examples:
    ```sh
    python inference.py --config=example/config/lighthouse.yaml --loop
    python inference.py --config=example/config/labrador.yaml --loop
    ```


    Input Image


    lightning, lighthouse


    sun rising, lighthouse


    fireworks, lighthouse










    Input Image


    labrador jumping


    labrador walking


    labrador running








    ## Training

    We provide [training script]("train.py") for PIA. It borrows from [AnimateDiff](https://github.com/guoyww/AnimateDiff/tree/main) heavily, so please prepare the dataset and configuration files according to the [guideline](https://github.com/guoyww/AnimateDiff/blob/main/__assets__/docs/animatediff.md#steps-for-training).

    After preparation, you can train the model by running the following command using torchrun:

    ```shell
    torchrun --nnodes=1 --nproc_per_node=1 train.py --config example/config/train.yaml
    ```

    or by slurm,
    ```shell
    srun --quotatype=reserved --job-name=pia --gres=gpu:8 --ntasks-per-node=8 --ntasks=8 --cpus-per-task=4 --kill-on-bad-exit=1 python train.py --config example/config/train.yaml
    ```

    ## AnimateBench
    We have open-sourced AnimateBench on [HuggingFace](https://huggingface.co/datasets/ymzhang319/AnimateBench) which includes images, prompts and configs to evaluate PIA and other image animation methods.

    ## BibTex
    ```
    @inproceedings{zhang2024pia,
    title={Pia: Your personalized image animator via plug-and-play modules in text-to-image models},
    author={Zhang, Yiming and Xing, Zhening and Zeng, Yanhong and Fang, Youqing and Chen, Kai},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    pages={7747--7756},
    year={2024}
    }
    ```

    ## Contact Us
    **Yiming Zhang**: [email protected]

    **Zhening Xing**: [email protected]

    **Yanhong Zeng**: [email protected]

    ## Acknowledgements
    The code is built upon [AnimateDiff](https://github.com/guoyww/AnimateDiff), [Tune-a-Video](https://github.com/showlab/Tune-A-Video) and [PySceneDetect](https://github.com/Breakthrough/PySceneDetect)

    You may also want to try other project from our team:

    MMagic