Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/openai/gpt-2
Code for the paper "Language Models are Unsupervised Multitask Learners"
https://github.com/openai/gpt-2
paper
Last synced: 4 days ago
JSON representation
Code for the paper "Language Models are Unsupervised Multitask Learners"
- Host: GitHub
- URL: https://github.com/openai/gpt-2
- Owner: openai
- License: other
- Created: 2019-02-11T04:21:59.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2024-08-14T10:50:53.000Z (4 months ago)
- Last Synced: 2024-12-02T12:07:50.563Z (11 days ago)
- Topics: paper
- Language: Python
- Homepage: https://openai.com/blog/better-language-models/
- Size: 4.28 MB
- Stars: 22,591
- Watchers: 632
- Forks: 5,533
- Open Issues: 177
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-ChatGPT-repositories - gpt-2 - Code for the paper "Language Models are Unsupervised Multitask Learners" (NLP)
- awesome-production-machine-learning - OpenAI GPT-2 - 2.svg?style=social) - OpenAI's code from their paper ["Language Models are Unsupervised Multitask Learners"](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf). (Industrial Strength NLP)
- Awesome-AIML-Data-Ops - OpenAI GPT-2 - 2.svg?style=social) - OpenAI's code from their paper ["Language Models are Unsupervised Multitask Learners"](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf). (AutoML NLP)
- awesome-ml-dev-tools - Official Python API
- StarryDivineSky - openai/gpt-2
- awesome-aigc - Open ai gpt-2
- my-awesome - openai/gpt-2 - 08 star:22.6k fork:5.5k Code for the paper "Language Models are Unsupervised Multitask Learners" (Python)
- awesome-llm-and-aigc - GPT-2 - 2?style=social"/> : "Language Models are Unsupervised Multitask Learners". (**[OpenAI blog, 2019](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf)**). [Better language models and their implications](https://openai.com/research/better-language-models). (Summary)
- awesome-llm-and-aigc - GPT-2 - 2?style=social"/> : "Language Models are Unsupervised Multitask Learners". (**[OpenAI blog, 2019](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf)**). [Better language models and their implications](https://openai.com/research/better-language-models). (Summary)
- AiTreasureBox - openai/gpt-2 - 12-07_22619_2](https://img.shields.io/github/stars/openai/gpt-2.svg)|Code for the paper "Language Models are Unsupervised Multitask Learners"| (Repos)
README
**Status:** Archive (code is provided as-is, no updates expected)
# gpt-2
Code and models from the paper ["Language Models are Unsupervised Multitask Learners"](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf).
You can read about GPT-2 and its staged release in our [original blog post](https://openai.com/research/better-language-models/), [6 month follow-up post](https://openai.com/blog/gpt-2-6-month-follow-up/), and [final post](https://www.openai.com/blog/gpt-2-1-5b-release/).
We have also [released a dataset](https://github.com/openai/gpt-2-output-dataset) for researchers to study their behaviors.
* *Note that our original parameter counts were wrong due to an error (in our previous blog posts and paper). Thus you may have seen small referred to as 117M and medium referred to as 345M.*
## Usage
This repository is meant to be a starting point for researchers and engineers to experiment with GPT-2.
For basic information, see our [model card](./model_card.md).
### Some caveats
- GPT-2 models' robustness and worst case behaviors are not well-understood. As with any machine-learned model, carefully evaluate GPT-2 for your use case, especially if used without fine-tuning or in safety-critical applications where reliability is important.
- The dataset our GPT-2 models were trained on contains many texts with [biases](https://twitter.com/TomerUllman/status/1101485289720242177) and factual inaccuracies, and thus GPT-2 models are likely to be biased and inaccurate as well.
- To avoid having samples mistaken as human-written, we recommend clearly labeling samples as synthetic before wide dissemination. Our models are often incoherent or inaccurate in subtle ways, which takes more than a quick read for a human to notice.### Work with us
Please [let us know](mailto:[email protected]) if you’re doing interesting research with or working on applications of GPT-2! We’re especially interested in hearing from and potentially working with those who are studying
- Potential malicious use cases and defenses against them (e.g. the detectability of synthetic text)
- The extent of problematic content (e.g. bias) being baked into the models and effective mitigations## Development
See [DEVELOPERS.md](./DEVELOPERS.md)
## Contributors
See [CONTRIBUTORS.md](./CONTRIBUTORS.md)
## Citation
Please use the following bibtex entry:
```
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
```## Future work
We may release code for evaluating the models on various benchmarks.
We are still considering release of the larger models.
## License
[Modified MIT](./LICENSE)