Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/openai/point-e
Point cloud diffusion for 3D model synthesis
https://github.com/openai/point-e
Last synced: about 14 hours ago
JSON representation
Point cloud diffusion for 3D model synthesis
- Host: GitHub
- URL: https://github.com/openai/point-e
- Owner: openai
- License: mit
- Created: 2022-12-06T16:32:13.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2024-07-04T19:05:34.000Z (6 months ago)
- Last Synced: 2025-01-07T11:07:28.436Z (8 days ago)
- Language: Python
- Size: 1.53 MB
- Stars: 6,594
- Watchers: 220
- Forks: 765
- Open Issues: 77
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-ai-tools - Point·E - e development by creating an account on GitHub. (1. <a name='ImageArtGeneration'></a>đŸ“· Image & Art Generation)
- awesome-ChatGPT-repositories - point-e - Point cloud diffusion for 3D model synthesis (Others)
- ai-game-devtools - Point·E
- awesome-generative-ai - openai/point-e
- awesome-chatgpt - Point-E - A System for Generating 3D Point Clouds from Complex Prompts. (Venture Capitalists / OpenAI Products)
README
# Point·E
![Animation of four 3D point clouds rotating](point_e/examples/paper_banner.gif)
This is the official code and model release for [Point-E: A System for Generating 3D Point Clouds from Complex Prompts](https://arxiv.org/abs/2212.08751).
# Usage
Install with `pip install -e .`.
To get started with examples, see the following notebooks:
* [image2pointcloud.ipynb](point_e/examples/image2pointcloud.ipynb) - sample a point cloud, conditioned on some example synthetic view images.
* [text2pointcloud.ipynb](point_e/examples/text2pointcloud.ipynb) - use our small, worse quality pure text-to-3D model to produce 3D point clouds directly from text descriptions. This model's capabilities are limited, but it does understand some simple categories and colors.
* [pointcloud2mesh.ipynb](point_e/examples/pointcloud2mesh.ipynb) - try our SDF regression model for producing meshes from point clouds.For our P-FID and P-IS evaluation scripts, see:
* [evaluate_pfid.py](point_e/evals/scripts/evaluate_pfid.py)
* [evaluate_pis.py](point_e/evals/scripts/evaluate_pis.py)For our Blender rendering code, see [blender_script.py](point_e/evals/scripts/blender_script.py)
# Samples
You can download the seed images and point clouds corresponding to the paper banner images [here](https://openaipublic.azureedge.net/main/point-e/banner_pcs.zip).
You can download the seed images used for COCO CLIP R-Precision evaluations [here](https://openaipublic.azureedge.net/main/point-e/coco_images.zip).