Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/opendrivelab/betop
[NeurIPS 2024] Behavioral Topology (BeTop), a multi-agent behavior formulation for interactive motion prediction and planning
https://github.com/opendrivelab/betop
autonomous-driving motion-planning motion-prediction
Last synced: 7 days ago
JSON representation
[NeurIPS 2024] Behavioral Topology (BeTop), a multi-agent behavior formulation for interactive motion prediction and planning
- Host: GitHub
- URL: https://github.com/opendrivelab/betop
- Owner: OpenDriveLab
- License: apache-2.0
- Created: 2024-03-31T07:17:41.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2024-11-12T09:25:41.000Z (about 2 months ago)
- Last Synced: 2024-12-19T22:07:01.580Z (14 days ago)
- Topics: autonomous-driving, motion-planning, motion-prediction
- Language: Python
- Homepage: https://arxiv.org/abs/2409.18031
- Size: 662 KB
- Stars: 65
- Watchers: 5
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
BeTop: Reasoning Multi-Agent Behavioral Topology
for Interactive Autonomous Driving
[![arXiv](https://img.shields.io/badge/arXiv-2409.18031-479ee2.svg)](https://arxiv.org/abs/2409.18031)
> - [Haochen Liu](https://scholar.google.com/citations?user=iizqKUsAAAAJ&hl), [Li Chen](https://scholar.google.com/citations?user=ulZxvY0AAAAJ&hl=zh-CN), Yu Qiao, Chen Lv and Hongyang Li
> - [arXiv paper](https://arxiv.org/abs/2409.18031) | Slides TODO
> - If you have any questions, please feel free to contact: *Haochen Liu* ( [email protected] )---
**[2024-11]** Scenario Token released for ```Test14-Inter```. [Link](https://github.com/OpenDriveLab/BeTop/releases/download/nuplan/test14-inter.yaml)
**[2024-11]** Prediction project released.
Full code and checkpoints release is coming soon. Please stay tuned.
## Overview
**BeTop** leverages braid theory to model multi-agent future behaviors in autonomous driving;
The synergetic framework, *BeTopNet*, integrates topology reasoning with prediction and planning tasks for autonomous driving.
## Get Started
### Prediction
We provide the full prediction implementation of BeTopNet in Waymo Open Motion Dataset (WOMD).
**Features:**
- :white_check_mark: Full support for WOMD Prediction Challenges
- :white_check_mark: Flexible Toolbox for prediction tasks
- :white_check_mark: Pipeline for reproduced popular Baselines**[Guideline](womd/README.md)**
- [Data Preparation](/docs/womd/DataPrep_pred.md)
- [Training & Evaluation](/docs//womd/TrainEval_pred.md)
- [Testing & Submission](/docs//womd/Submission_pred.md)## TODO List
- [x] Initial release
- [x] Prediction pipeline in WOMD
- [ ] Planning pipeline in nuPlan## Citation
If you find the project helpful for your research, please consider citing our paper:
```bibtex
@inproceedings{liu2024betop,
title={Reasoning Multi-Agent Behavioral Topology for Interactive Autonomous Driving},
author={Haochen Liu and Li Chen and Yu Qiao and Chen Lv and Hongyang Li},
booktitle={NeurIPS},
year={2024}
}
```