Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/openmole/mgo
Purely functional genetic algorithms for multi-objective optimisation
https://github.com/openmole/mgo
functional-programming genetic-algorithm hyperparameter-optimization hyperparameter-tuning hyperparameters optimisation parameter-tuning scala
Last synced: 5 days ago
JSON representation
Purely functional genetic algorithms for multi-objective optimisation
- Host: GitHub
- URL: https://github.com/openmole/mgo
- Owner: openmole
- Created: 2012-08-29T13:04:39.000Z (over 12 years ago)
- Default Branch: master
- Last Pushed: 2024-12-11T10:56:31.000Z (about 1 month ago)
- Last Synced: 2024-12-31T11:24:48.099Z (12 days ago)
- Topics: functional-programming, genetic-algorithm, hyperparameter-optimization, hyperparameter-tuning, hyperparameters, optimisation, parameter-tuning, scala
- Language: Scala
- Homepage:
- Size: 3.21 MB
- Stars: 72
- Watchers: 14
- Forks: 4
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-scala - mgo - objective optimisation | ![GitHub stars](https://img.shields.io/github/stars/openmole/mgo) ![GitHub commit activity](https://img.shields.io/github/commit-activity/y/openmole/mgo) (Table of Contents / Science and Data Analysis)
README
MGO
===MGO is a purely functionnal scala library based for evolutionary / genetic algorithms:
* enforcing immutability,
* exposes a modular and extensible architecture,
* implements state of the art algorithms,
* handles noisy (stochastic) fitness functions,
* implements auto-adaptatative algortihms,
* implements algorithms with distributed computing in mind for integration with [OpenMOLE](http://openmole.org).MGO implements NGSAII, NSGA3, CP (Calibration Profile), PSE (Pattern Search Experiment), OSE (Antecedant research), Niched Evolution, ABC (Bayesian Calibration).
Licence
-------MGO is licenced under the GNU GPLv3 software licence.
Example
-------Define a problem, for instance the multi-modal multi-objective ZDT4 benchmark:
```scala
object zdt4 {
def continuous(size: Int) = Vector.fill(size)(C(0.0, 5.0))
def compute(genome: Vector[Double], d: Vector[Int]): Vector[Double] = {
val genomeSize = genome.sizedef g(x: Seq[Double]) = 1 + 10 * (genomeSize - 1) + x.map { i => pow(i, 2) - 10 * cos(4 * Pi * i) }.sum
def f(x: Seq[Double]) = {
val gx = g(x)
gx * (1 - sqrt(genome(0) / gx))
}Vector(genome(0), f(genome.tail))
}}
```
Define the optimisation algorithm, for instance NSGAII:
```scala
import mgo.evolution._
import mgo.evolution.algorithm._
// For zdt4
import mgo.test._val nsga2 =
NSGA2(
mu = 100,
lambda = 100,
fitness = zdt4.compute,
continuous = zdt4.continuous(10))```
Run the optimisation:
```scala
def evolution =
nsga2.
until(afterGeneration(1000)).
trace((s, is) => println(s.generation))val (finalState, finalPopulation) = evolution.eval(new util.Random(42))
println(NSGA2.result(nsga2, finalPopulation).mkString("\n"))
```Noisy fitness functions
-----------------------All algorithm in MGO have version to compute on noisy fitness function. MGO handle noisy fitness functions by resampling
only the most promising individuals. It uses an aggregation function to aggregate the multiple sample when needed.For instance a version of NSGA2 for noisy fitness functions may be used has follow:
```scala
import mgo._
import algorithm.noisynsga2._
import context.implicits._object sphere {
def scale(s: Vector[Double]): Vector[Double] = s.map(_.scale(-2, 2))
def compute(i: Vector[Double]): Double = i.map(x => x * x).sum
}object noisySphere {
def scale(s: Vector[Double]): Vector[Double] = sphere.scale(s)
def compute(rng: util.Random, v: Vector[Double]) =
sphere.compute(v) + rng.nextGaussian() * 0.5 * math.sqrt(sphere.compute(v))
}def aggregation(history: Vector[Vector[Double]]) = history.transpose.map { o => o.sum / o.size }
val nsga2 =
NoisyNSGA2(
mu = 100,
lambda = 100,
fitness = (rng, v) => Vector(noisySphere.compute(rng, v)),
aggregation = aggregation,
genomeSize = 2)val (finalState, finalPopulation) =
run(nsga2).
until(afterGeneration(1000)).
trace((s, is) => println(s.generation)).
eval(new util.Random(42))println(result(finalPopulation, aggregation, noisySphere.scale).mkString("\n"))
```Diversity only
--------------MGO proposes the PSE alorithm that aim a creating diverse solution instead of optimsing a function. The paper about this
algorithm can be found [here](http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138212).```scala
import mgo._
import algorithm.pse._
import context.implicits._val pse = PSE(
lambda = 10,
phenotype = zdt4.compute,
pattern =
boundedGrid(
lowBound = Vector(0.0, 0.0),
highBound = Vector(1.0, 200.0),
definition = Vector(10, 10)),
genomeSize = 10)val (finalState, finalPopulation) =
run(pse).
until(afterGeneration(1000)).
trace((s, is) => println(s.generation)).
eval(new util.Random(42))println(result(finalPopulation, zdt4.scale).mkString("\n"))
```This program explores all the different combination of values that can be produced by the multi-objective function of ZDT4.
For more examples, have a look at the main/scala/fr/iscpif/mgo/test directory in the repository.
Mixed optimisation and diversity
--------------------------------The calibration profile algorthim compute the best fitness function for a set of niches. This algorithm is explained [here](http://jasss.soc.surrey.ac.uk/18/1/12.html).
In MGO you can compute profiles of a 10 dimensional hyper-sphere function using the following:
```scala
import algorithm.profile._
import context.implicits._//Profile the first dimension of the genome
val algo = Profile(
lambda = 100,
fitness = sphere.compute,
niche = genomeProfile(x = 0, nX = 10),
genomeSize = 10)val (finalState, finalPopulation) =
run(algo).
until(afterGeneration(1000)).
trace((s, is) => println(s.generation)).
eval(new util.Random(42))println(result(finalPopulation, sphere.scale).mkString("\n"))
```Noisy profiles
--------------All algorithms in MGO have a pendant for noisy fitness function. Here is an example of a profile computation for a sphere
function with noise.```scala
import algorithm.noisyprofile._
import context.implicits._def aggregation(history: Vector[Double]) = history.sum / history.size
def niche = genomeProfile(x = 0, nX = 10)val algo = NoisyProfile(
muByNiche = 20,
lambda = 100,
fitness = noisySphere.compute,
aggregation = aggregation,
niche = niche,
genomeSize = 5)val (finalState, finalPopulation) =
run(algo).
until(afterGeneration(1000)).
trace((s, is) => println(s.generation)).
eval(new util.Random(42))println(result(finalPopulation, aggregation, noisySphere.scale, niche).mkString("\n"))
```
Distributed computing
---------------------Algorithms implemented in MGO are also avialiable in the workflow plateform for distributed computing [OpenMOLE](http://openmole.org).
SBT dependency
----------------
```scala
libraryDependencies += "fr.iscpif" %% "mgo" % "2.45"
```