Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/opennmt/tokenizer

Fast and customizable text tokenization library with BPE and SentencePiece support
https://github.com/opennmt/tokenizer

bpe cpp icu machine-translation natural-language-processing python sentencepiece tokenization tokenizer unicode

Last synced: 6 days ago
JSON representation

Fast and customizable text tokenization library with BPE and SentencePiece support

Awesome Lists containing this project

README

        

[![CI](https://github.com/OpenNMT/Tokenizer/workflows/CI/badge.svg)](https://github.com/OpenNMT/Tokenizer/actions?query=workflow%3ACI) [![PyPI version](https://badge.fury.io/py/pyonmttok.svg)](https://badge.fury.io/py/pyonmttok) [![Forum](https://img.shields.io/discourse/status?server=https%3A%2F%2Fforum.opennmt.net%2F)](https://forum.opennmt.net/)

# Tokenizer

Tokenizer is a fast, generic, and customizable text tokenization library for C++ and Python with minimal dependencies.

## Overview

By default, the Tokenizer applies a simple tokenization based on Unicode types. It can be customized in several ways:

* **Reversible tokenization**
Marking joints or spaces by annotating tokens or injecting modifier characters.
* **Subword tokenization**
Support for training and using BPE and SentencePiece models.
* **Advanced text segmentation**
Split digits, segment on case or alphabet change, segment each character of selected alphabets, etc.
* **Case management**
Lowercase text and return case information as a separate feature or inject case modifier tokens.
* **Protected sequences**
Sequences can be protected against tokenization with the special characters ⦅ and ⦆.

See the [available options](docs/options.md) for an overview of supported features.

## Using

The Tokenizer can be used in Python, C++, or command line. Each mode exposes the same set of options.

### Python API

```bash
pip install pyonmttok
```

```python
>>> import pyonmttok
>>> tokenizer = pyonmttok.Tokenizer("conservative", joiner_annotate=True)
>>> tokens = tokenizer("Hello World!")
>>> tokens
['Hello', 'World', '■!']
>>> tokenizer.detokenize(tokens)
'Hello World!'
```

See the [Python API description](bindings/python) for more details.

### C++ API

```cpp
#include

using namespace onmt;

int main() {
Tokenizer tokenizer(Tokenizer::Mode::Conservative, Tokenizer::Flags::JoinerAnnotate);
std::vector tokens;
tokenizer.tokenize("Hello World!", tokens);
}
```

See the [Tokenizer class](include/onmt/Tokenizer.h) for more details.

### Command line clients

```bash
$ echo "Hello World!" | cli/tokenize --mode conservative --joiner_annotate
Hello World ■!
$ echo "Hello World!" | cli/tokenize --mode conservative --joiner_annotate | cli/detokenize
Hello World!
```

See the `-h` flag to list the available options.

## Development

### Dependencies

* [ICU](http://site.icu-project.org/)

### Compiling

*CMake and a compiler that supports the C++11 standard are required to compile the project.*

```
git submodule update --init
mkdir build
cd build
cmake ..
make
```

It will produce the dynamic library `libOpenNMTTokenizer` and tokenization clients in `cli/`.

* To compile only the library, use the `-DLIB_ONLY=ON` flag.

### Testing

The tests are using [Google Test](https://github.com/google/googletest) which is included as a Git submodule. Run the tests with:

```
mkdir build
cd build
cmake -DBUILD_TESTS=ON ..
make
test/onmt_tokenizer_test ../test/data
```