Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/operalib/operalib
Learning with operator-valued kernels
https://github.com/operalib/operalib
features fourier kernel kernel-methods learning-algorithm machine-learning-library operator-valued random rff scikit-learn
Last synced: 2 months ago
JSON representation
Learning with operator-valued kernels
- Host: GitHub
- URL: https://github.com/operalib/operalib
- Owner: operalib
- License: bsd-3-clause
- Created: 2016-03-10T15:55:28.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2023-01-31T08:47:06.000Z (almost 2 years ago)
- Last Synced: 2024-04-26T05:07:11.612Z (9 months ago)
- Topics: features, fourier, kernel, kernel-methods, learning-algorithm, machine-learning-library, operator-valued, random, rff, scikit-learn
- Language: Python
- Size: 32.6 MB
- Stars: 19
- Watchers: 9
- Forks: 3
- Open Issues: 6
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
README
.. -*- mode: rst -*-
.. |Travis| image:: https://travis-ci.org/operalib/operalib.svg?branch=master
.. _Travis: https://travis-ci.org/operalib/operalib.. |Codecov| image:: https://codecov.io/gh/operalib/operalib/branch/master/graph/badge.svg
.. _Codecov: https://codecov.io/gh/operalib/operalib.. |CircleCI| image:: https://circleci.com/gh/operalib/operalib/tree/master.svg?style=shield&circle-token=:circle-token
.. _CircleCI: https://circleci.com/gh/operalib/operalib.. |Python27| image:: https://img.shields.io/badge/python-2.7-blue.svg
.. _Python27: https://github.com/operalib/operalib.. |Python36| image:: https://img.shields.io/badge/python-3.6-blue.svg
.. _Python36: https://github.com/operalib/operalib.. |PyPi| image:: https://badge.fury.io/py/operalib.svg
.. _PyPi: https://badge.fury.io/py/operalibOperalib
========
|PyPi|_ |Travis|_ |Codecov|_ |CircleCI|_ |Python27|_ |Python36|_Operalib is a library for structured learning and prediction for
`python `_ based on operator-valued kernels (OVKs).
OVKs are an extension of scalar kernels to matrix-valued kernels.
The idea is to predict silmultaneously several targets while, for instance,
encoding the output structure with the operator-valued kernel.We aim at providing an easy-to-use standard implementation of operator-valued
kernel methods. Operalib is designed for compatilibity to
`scikit-learn `_ interface and conventions.
It uses `numpy `_,
`scipy `_ and `cvxopt `_ as
underlying libraries.The project is developed by the
`AROBAS `_ group of the
`IBISC laboratory `_ of the
University of Evry, France.Documentation
=============
Is available at: http://operalib.github.io/operalib/documentation/.Install
=======
The package is available on PyPi, and the installation should be as simple as::pip install operalib
To install from the sources in your home directory, use::
pip install .
To install for all users on Unix/Linux::
python setup.py build
python setup.py install.. For more detailed installation instructions,
.. see the web page http://scikit-learn.org/stable/install.htmlGIT
~~~You can check the latest sources with the command::
git clone https://github.com/operalib/operalib
or through ssh, instead of https, if you have write privileges::
git clone [email protected]:operalib/operalib.git
References
==========
A non-exhaustive list of publications related to operator-valued kernel is
available here:http://operalib.github.io/operalib/documentation/reference_papers/index.html.