Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/opium-sh/prl

Open-source library for a reinforcement learning research.
https://github.com/opium-sh/prl

artificial-intelligence deep-learning machine-learning neural-networks openai-gym opium-sh python reinforcement-learning

Last synced: 1 day ago
JSON representation

Open-source library for a reinforcement learning research.

Awesome Lists containing this project

README

        

# People's Reinforcement Learning (PRL)

![](https://img.shields.io/badge/python-3.6-blue.svg)
![](https://img.shields.io/badge/code%20style-black-000000.svg)
![](https://readthedocs.org/projects/prl/badge/?version=latest)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3662113.svg)](https://doi.org/10.5281/zenodo.3662113)

## Description

This is a reinforcement learning framework made with research activity in mind.
You can read mode about PRL in our
[introductory blog post](https://medium.com/asap-report/prl-a-novel-approach-to-building-a-reinforcement-learning-framework-in-python-208cb8ae9349?sk=ea595f44fc8bd3f2aa4416c997d16891),
[in-depth look into library](https://medium.com/asap-report/in-depth-look-into-prl-the-new-reinforcement-learning-framework-in-python-7ac57c282a61?source=friends_link&sk=f9c062f9ac8fd045d71f7319872e44b5),
[documentation](https://prl.readthedocs.io/en/latest/index.html) or
[wiki](https://gitlab.com/opium-sh/prl/wikis/home).

## System requirements

* ```python 3.6```
* ```swig```
* ```python3-dev```

We recommend using ```virtualenv``` for installing project dependencies.

## Installation

* clone the project:

```
git clone [email protected]:opium-sh/prl.git
```

* create and activate a virtualenv for the project (you can skip this step if you are not using virtualenv)

```
virtualenv -p python3.6 your/path && source your/path/bin/activate
```

* install dependencies:

```
pip install -r requirements.txt
```

* install library

```
pip install -e .
```

* run example:

```
cd examples
python cart_pole_example_cross_entropy.py
```

## Citation

If you use PRL in your work or research please cite us as:

Tempczyk, P., Sliwowski, M., Kozakowski, P., Smuda, P., Topolski, B., Nabrdalik, F., & Malisz, T. (2020). opium-sh/prl: First release of Peoples’s Reinforcement Learning (PRL). Zenodo. https://doi.org/10.5281/ZENODO.3662113