Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/opringle/collaborative_filtering
A repository to experiment building state of the art recommender systems using apache MXNet
https://github.com/opringle/collaborative_filtering
Last synced: 2 months ago
JSON representation
A repository to experiment building state of the art recommender systems using apache MXNet
- Host: GitHub
- URL: https://github.com/opringle/collaborative_filtering
- Owner: opringle
- Created: 2018-03-21T04:09:33.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-05-17T04:53:25.000Z (over 6 years ago)
- Last Synced: 2024-08-01T22:42:04.281Z (5 months ago)
- Language: Python
- Size: 14.4 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-MXNet - collaborative_filtering
README
# Deep Learning Recommender Systems
A repository to experiment building recommender systems using apache MXNet.
## Repo structure
- `/data` directory used for storing model input data
- `/libs` python modules used by model training script
- `./recysys.py` trains the recommender system
- `./results` directory used for storing model reports and results
- `./docs`: research notes etc## Running the code
1. Clone this repo and cd to root
2. Download, unzip and store the ratings data:
1. `$ mkdir data`
2. `$ wget 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'`
3. `$ unzip -a ml-1m.zip`
4. `$ mv ./ml-1m/ratings.dat ./data/`
5. `$ rm -rf ml-1m`
6. `$ rm ml-1m.zip`
6. Train the model: `$ python recsys.py`## ToDo
- [ ] Use normal data iterators with data in memory
- [ ] Use callback functions to reproduce HR@K plots