Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/opringle/named_entity_recognition
A place to implement state of the art deep learning methods for named entity recognition using python and MXNet.
https://github.com/opringle/named_entity_recognition
Last synced: 2 months ago
JSON representation
A place to implement state of the art deep learning methods for named entity recognition using python and MXNet.
- Host: GitHub
- URL: https://github.com/opringle/named_entity_recognition
- Owner: opringle
- Created: 2017-12-09T21:36:35.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-04-14T21:49:04.000Z (over 6 years ago)
- Last Synced: 2024-08-01T22:41:47.093Z (5 months ago)
- Language: Python
- Homepage:
- Size: 4.83 MB
- Stars: 5
- Watchers: 2
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-MXNet - NER with Bidirectional LSTM-CNNs
README
## Goal
- This repo contains an MXNet implementation of this state of the art [entity recognition model](https://www.aclweb.org/anthology/Q16-1026).
- You can find my blog post on the model [here](https://opringle.github.io/2018/02/06/CNNLSTM_entity_recognition.html).## Running the code
1. Clone this repo
2. Train the model: `$ cd src && python ner.py`To reproduce the preprocessed training data:
1. Download and unzip the data: https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus/downloads/ner_dataset.csv
2. Move ner_dataset.csv into `./data`
3. `$ cd src && python preprocess.py`