Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/oshholail/EGY-BCD

EGYPT-Dataset
https://github.com/oshholail/EGY-BCD

Last synced: 3 months ago
JSON representation

EGYPT-Dataset

Awesome Lists containing this project

README

        


AFDE-Net: Building Change Detection using Attention-Based Feature Differential Enhancement for Satellite Imagery

[`Shimaa Holail Researchgate`](https://www.researchgate.net/profile/Shimaa-Holail)[`Shimaa Holail Linkedin`](https://www.linkedin.com/in/shimaaholail/), [`Tamer Saleh`](https://www.bu.edu.eg/staff/tamermohamed3), [`Xiongwu Xiao`](http://jszy.whu.edu.cn/xiaoxiongwu1), and [`Deren Li`](http://www.lmars.whu.edu.cn/prof_web/prof_lideren/index.htm)

The train and test code will be released soon. The EGY-BCD dataset is available.

## Updates
| :zap: | AFDE-Net has been Published in IEEE Geoscience and Remote Sensing Letters (GRSL). DOI: 10.1109/LGRS.2023.3283505 |
|---------------|:------------------------|

## :speech_balloon: EGY-BCD Dataset Description
Bi-temporal images in the EGY-BCD dataset are taken from 4 different regions located in Egypt, including New Mansoura, El Galala City, New Cairo, and New Thebes. The figure below shows the building changes in New Mansoura City and New Thebes. Our image data capture time varies from 2017 to 2022. The images feature seasonal changes and different lighting changes in our new dataset, which can help develop effective methods that can mitigate the impact of unrelated changes on real changes.

![image-20230201153142126](./img/MansouraTiba.png)

## :speech_balloon: Network Architecture
An overview of the proposed architecture. (a) is the backbone of ADFE-Net. The node $Xi$ features denotes a convolutional block as shown in (b). The feature differential enhancement FDE is described in (c). (d) is the ensemble spatial-channel attention fusion ESCAF.
![image-20230201153142126](./img/overall.png)

## :speech_balloon: Quantitative and Qualitative Results on the EGY-BCD Dataset

### :point_right: Quantitative Results
![image-QuantitativeResult](./img/result2.png)

### :point_right: Qualitative Results

![image-QualitativeResult](./img/result.png)

## :speech_balloon: Requirements

- Python 3.7
- Pytorch 1.7

Please see `requirements.txt` for all the other requirements.

### πŸ”­ Baselines

- [x] Linknet [[paper](https://arxiv.org/abs/1707.03718)]
- [x] UPerNet [[paper](https://arxiv.org/abs/1807.10221)]
- [x] DeepLabV3 [[paper](https://arxiv.org/abs/1706.05587)]
- [x] Unet [[paper](https://arxiv.org/abs/1505.04597)]
- [x] Unet++ [[paper](https://arxiv.org/pdf/1807.10165.pdf)]
- [x] STANet [[paper](https://www.mdpi.com/2072-4292/12/10/1662/pdf)]
- [x] SNUNet-CD [[paper](https://ieeexplore.ieee.org/abstract/document/9355573)]
- [x] DMINet [[paper](https://ieeexplore.ieee.org/abstract/document/10034787)]

#### Encoders

Below is a list of encoders used in this work and their pre-trained weights.

ResNet

| Encoder | Weights | Params, M |
| --------- | :-------------------: | :-------: |
| resnet50 | imagenet / ssl / swsl | 23M |
| resnet101 | imagenet | 42M |

RegNet(x/y)

| Encoder | Weights | Params, M |
| ---------------- | :------: | :-------: |
| timm-regnety_120 | imagenet | 49M |
| timm-regnety_160 | imagenet | 80M |
| timm-regnety_320 | imagenet | 141M |

## :speech_balloon: Dataset Preparation

### :point_right: Data Structure

```
"""
EGY-BCD dataset with pixel-level binary labelsοΌ›
β”œβ€”β€”β€”β€”train
| β”œβ€”β€”β€”A
| β”œβ€”β€”β€”B
| β”œβ€”β€”β€”label
|
β”œβ€”β€”β€”β€”val
| β”œβ€”β€”β€”A
| β”œβ€”β€”β€”B
| β”œβ€”β€”β€”label
|
β”œβ€”β€”β€”β€”test
| β”œβ€”β€”β€”A
| β”œβ€”β€”β€”B
| β”œβ€”β€”β€”label
"""
```

`A`: Images of Time1;
`B`:Images of Time2;
`label`: Ground Truth;
`each file contains the image names (XXXX.png)`

### :truck: Datasets

You can download our novel public EGY-BCD dataset through the following link:

- [x] [EGY-BCD][baidu drive](https://pan.baidu.com/s/1UREv4F0DBHgabJW2VScgCA) Passward: (EGYD)
- [x] [EGY-BCD][google drive](https://drive.google.com/file/d/16LLC1iSJQuFPrfuXCJSeSsEzKhXodhzp/view?usp=drive_link)

### :page_with_curl: Citing

```
@ARTICLE{10145434,
author={Shimaa Holail, Tamer Saleh, Xiongwu Xiao, and Deren Li},
journal={in IEEE Geoscience and Remote Sensing Letters},
title={AFDE-Net: Building Change Detection Using Attention-Based Feature Differential Enhancement for Satellite Imagery},
year={2023},
volume={20},
number={6006405},
pages={1-5},
doi={10.1109/LGRS.2023.3283505}}

```

### Contact Information
If you have any question about EGY-BCD dataset, please contact [email protected]

## :speech_balloon: References

Appreciate the work from the following repositories:

- [wenhwu/awesome-remote-sensing-change-detection](https://github.com/wenhwu/awesome-remote-sensing-change-detection)
- [qubvel/segmentation_models.pytorch](https://github.com/qubvel/segmentation_models.pytorch)
- [likyoo/PRCV2021_ChangeDetection_Top3](https://github.com/likyoo/PRCV2021_ChangeDetection_Top3)
- [likyoo/Pytorch-UNet](https://github.com/likyoo/Pytorch-UNet)
- [angup143/disaster_mapping](https://github.com/angup143/disaster_mapping/tree/5bab37700950bb9b5e6af9bbe41a6ab66645bf58)