Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/osmr/imgclsmob
Sandbox for training deep learning networks
https://github.com/osmr/imgclsmob
3d-face-reconstruction chainer cifar classification deep-learning gluon human-pose-estimation image-classification imagenet keras machine-learning mxnet neural-network pretrained-models pytorch segmentation semantic-segmentation tensorflow tensorflow2
Last synced: 5 days ago
JSON representation
Sandbox for training deep learning networks
- Host: GitHub
- URL: https://github.com/osmr/imgclsmob
- Owner: osmr
- License: mit
- Created: 2018-07-09T12:57:46.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-09-06T09:38:46.000Z (4 months ago)
- Last Synced: 2024-10-29T14:50:31.603Z (3 months ago)
- Topics: 3d-face-reconstruction, chainer, cifar, classification, deep-learning, gluon, human-pose-estimation, image-classification, imagenet, keras, machine-learning, mxnet, neural-network, pretrained-models, pytorch, segmentation, semantic-segmentation, tensorflow, tensorflow2
- Language: Python
- Homepage:
- Size: 15.6 MB
- Stars: 2,968
- Watchers: 76
- Forks: 563
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesomeai - imgclsmob
- awesome-ai-awesomeness - imgclsmob
- awesome-ai-awesomeness - imgclsmob
- awesome-pytorch - image-classification-mobile - 1K (Tutorials & Examples)
- Awesome-MXNet - pretrained models (Gluon:star:)
- Awesome-pytorch-list-CNVersion - image-classification-mobile - 1K上的与训练分类模型集合。 (Pytorch & related libraries|Pytorch & 相关库 / CV|计算机视觉:)
- awesome-keras - imgclsmob - A sandbox for training convolutional neuronal networks. (Examples/Notebooks)
- awesome-pytorch - image-classification-mobile - 1K (Tutorials & Examples)
- Awesome-pytorch-list - image-classification-mobile - 1K. (Pytorch & related libraries / CV:)
README
# Deep learning networks
[![Build Status](https://travis-ci.org/osmr/imgclsmob.svg?branch=master)](https://travis-ci.org/osmr/imgclsmob)
[![GitHub License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Python Version](https://img.shields.io/badge/python-3.10-lightgrey.svg)](https://github.com/osmr/imgclsmob)This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo
contains (re)implementations of various classification, segmentation, detection, and pose estimation models and scripts
for training/evaluating/converting.The following frameworks are used:
- MXNet/Gluon ([info](https://mxnet.apache.org)),
- PyTorch ([info](https://pytorch.org)),
- Chainer ([info](https://chainer.org)),
- Keras ([info](https://keras.io)),
- TensorFlow 1.x/2.x ([info](https://www.tensorflow.org)).For each supported framework, there is a PIP-package containing pure models without auxiliary scripts. List of packages:
- [gluoncv2](https://pypi.org/project/gluoncv2) for Gluon,
- [pytorchcv](https://pypi.org/project/pytorchcv) for PyTorch,
- [chainercv2](https://pypi.org/project/chainercv2) for Chainer,
- [kerascv](https://pypi.org/project/kerascv) for Keras,
- [tensorflowcv](https://pypi.org/project/tensorflowcv) for TensorFlow 1.x,
- [tf2cv](https://pypi.org/project/tf2cv) for TensorFlow 2.x.Currently, models are mostly implemented on Gluon and then ported to other frameworks. Some models are pretrained on
[ImageNet-1K](http://www.image-net.org), [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html),
[SVHN](http://ufldl.stanford.edu/housenumbers), [CUB-200-2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html),
[Pascal VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012), [ADE20K](http://groups.csail.mit.edu/vision/datasets/ADE20K),
[Cityscapes](https://www.cityscapes-dataset.com), and [COCO](http://cocodataset.org) datasets. All pretrained weights
are loaded automatically during use. See examples of such automatic loading of weights in the corresponding sections of
the documentation dedicated to a particular package:
- [Gluon models](gluon/README.md),
- [PyTorch models](https://github.com/osmr/pytorchcv/blob/master/README.md),
- [Chainer models](chainer_/README.md),
- [Keras models](keras_/README.md),
- [TensorFlow 1.x models](tensorflow_/README.md),
- [TensorFlow 2.x models](tensorflow2/README.md).## Installation
To use training/evaluating scripts as well as all models, you need to clone the repository and install dependencies:
```
git clone [email protected]:osmr/imgclsmob.git
pip install -r requirements.txt
```## Table of implemented classification models
Some remarks:
- `Repo` is an author repository, if it exists.
- `a`, `b`, `c`, `d`, and `e` means the implementation of a model for ImageNet-1K, CIFAR-10, CIFAR-100, SVHN, and CUB-200-2011, respectively.
- `A`, `B`, `C`, `D`, and `E` means having a pre-trained model for corresponding datasets.| Model | [Gluon](gluon/README.md) | [PyTorch](https://github.com/osmr/pytorchcv/blob/master/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TF](tensorflow_/README.md) | [TF2](tensorflow2/README.md) | Paper | Repo | Year |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| AlexNet | A | A | A | A | A | A | [link](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) | [link](https://code.google.com/archive/p/cuda-convnet2) | 2012 |
| ZFNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1311.2901) | - | 2013 |
| VGG | A | A | A | A | A | A | [link](https://arxiv.org/abs/1409.1556) | - | 2014 |
| BN-VGG | A | A | A | A | A | A | [link](https://arxiv.org/abs/1409.1556) | - | 2015 |
| BN-Inception | A | A | A | - | - | A | [link](https://arxiv.org/abs/1502.03167) | - | 2015 |
| ResNet | ABCDE | ABCDE | ABCDE | A | A | ABCDE | [link](https://arxiv.org/abs/1512.03385) | [link](https://github.com/KaimingHe/deep-residual-networks) | 2015 |
| PreResNet | ABCD | ABCD | ABCD | A | A | ABCD | [link](https://arxiv.org/abs/1603.05027) | [link](https://github.com/facebook/fb.resnet.torch) | 2016 |
| ResNeXt | ABCD | ABCD | ABCD | A | A | ABCD | [link](http://arxiv.org/abs/1611.05431) | [link](https://github.com/facebookresearch/ResNeXt) | 2016 |
| SENet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1709.01507) | [link](https://github.com/hujie-frank/SENet) | 2017 |
| SE-ResNet | ABCDE | ABCDE | ABCDE | A | A | ABCDE | [link](https://arxiv.org/abs/1709.01507) | [link](https://github.com/hujie-frank/SENet) | 2017 |
| SE-PreResNet | ABCD | ABCD | ABCD | A | A | ABCD | [link](https://arxiv.org/abs/1709.01507) | [link](https://github.com/hujie-frank/SENet) | 2017 |
| SE-ResNeXt | A | A | A | A | A | A | [link](https://arxiv.org/abs/1709.01507) | [link](https://github.com/hujie-frank/SENet) | 2017 |
| ResNeSt(A) | A | A | A | - | - | A | [link](https://arxiv.org/abs/2004.08955) | [link](https://github.com/zhanghang1989/ResNeSt) | 2020 |
| IBN-ResNet | A | A | - | - | - | A | [link](https://arxiv.org/abs/1807.09441) | [link](https://github.com/XingangPan/IBN-Net) | 2018 |
| IBN-ResNeXt | A | A | - | - | - | A | [link](https://arxiv.org/abs/1807.09441) | [link](https://github.com/XingangPan/IBN-Net) | 2018 |
| IBN-DenseNet | A | A | - | - | - | A | [link](https://arxiv.org/abs/1807.09441) | [link](https://github.com/XingangPan/IBN-Net) | 2018 |
| AirNet | A | A | A | - | - | A | [link](https://ieeexplore.ieee.org/document/8510896) | [link](https://github.com/soeaver/AirNet-PyTorch) | 2018 |
| AirNeXt | A | A | A | - | - | A | [link](https://ieeexplore.ieee.org/document/8510896) | [link](https://github.com/soeaver/AirNet-PyTorch) | 2018 |
| BAM-ResNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1807.06514) | [link](https://github.com/Jongchan/attention-module) | 2018 |
| CBAM-ResNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1807.06521) | [link](https://github.com/Jongchan/attention-module) | 2018 |
| ResAttNet | a | a | a | - | - | - | [link](https://arxiv.org/abs/1704.06904) | [link](https://github.com/fwang91/residual-attention-network) | 2017 |
| SKNet | a | a | a | - | - | - | [link](https://arxiv.org/abs/1903.06586) | [link](https://github.com/implus/SKNet) | 2019 |
| SCNet | A | A | A | - | - | A | [link](http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf) | [link](https://github.com/MCG-NKU/SCNet) | 2020 |
| RegNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/2003.13678) | [link](https://github.com/facebookresearch/pycls) | 2020 |
| DIA-ResNet | aBCD | aBCD | aBCD | - | - | - | [link](https://arxiv.org/abs/1905.10671) | [link](https://github.com/gbup-group/DIANet) | 2019 |
| DIA-PreResNet | aBCD | aBCD | aBCD | - | - | - | [link](https://arxiv.org/abs/1905.10671) | [link](https://github.com/gbup-group/DIANet) | 2019 |
| PyramidNet | ABCD | ABCD | ABCD | - | - | ABCD | [link](https://arxiv.org/abs/1610.02915) | [link](https://github.com/jhkim89/PyramidNet) | 2016 |
| DiracNetV2 | A | A | A | - | - | A | [link](https://arxiv.org/abs/1706.00388) | [link](https://github.com/szagoruyko/diracnets) | 2017 |
| ShaResNet | a | a | a | - | - | - | [link](https://arxiv.org/abs/1702.08782) | [link](https://github.com/aboulch/sharesnet) | 2017 |
| CRU-Net | A | - | - | - | - | - | [link](https://www.ijcai.org/proceedings/2018/88) | [link](https://github.com/cypw/CRU-Net) | 2018 |
| DenseNet | ABCD | ABCD | ABCD | A | A | ABCD | [link](https://arxiv.org/abs/1608.06993) | [link](https://github.com/liuzhuang13/DenseNet) | 2016 |
| CondenseNet | A | A | A | - | - | - | [link](https://arxiv.org/abs/1711.09224) | [link](https://github.com/ShichenLiu/CondenseNet) | 2017 |
| SparseNet | a | a | a | - | - | - | [link](https://arxiv.org/abs/1801.05895) | [link](https://github.com/Lyken17/SparseNet) | 2018 |
| PeleeNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1804.06882) | [link](https://github.com/Robert-JunWang/Pelee) | 2018 |
| Oct-ResNet | abcd | a | a | - | - | - | [link](https://arxiv.org/abs/1904.05049) | - | 2019 |
| Res2Net | a | - | - | - | - | - | [link](https://arxiv.org/abs/1904.01169) | - | 2019 |
| WRN | ABCD | ABCD | ABCD | - | - | a | [link](https://arxiv.org/abs/1605.07146) | [link](https://github.com/szagoruyko/wide-residual-networks) | 2016 |
| WRN-1bit | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1802.08530) | [link](https://github.com/McDonnell-Lab/1-bit-per-weight) | 2018 |
| DRN-C | A | A | A | - | - | A | [link](https://arxiv.org/abs/1705.09914) | [link](https://github.com/fyu/drn) | 2017 |
| DRN-D | A | A | A | - | - | A | [link](https://arxiv.org/abs/1705.09914) | [link](https://github.com/fyu/drn) | 2017 |
| DPN | A | A | A | - | - | A | [link](https://arxiv.org/abs/1707.01629) | [link](https://github.com/cypw/DPNs) | 2017 |
| DarkNet Ref | A | A | A | A | A | A | [link](https://github.com/pjreddie/darknet) | [link](https://github.com/pjreddie/darknet) | - |
| DarkNet Tiny | A | A | A | A | A | A | [link](https://github.com/pjreddie/darknet) | [link](https://github.com/pjreddie/darknet) | - |
| DarkNet-19 | a | a | a | a | a | a | [link](https://github.com/pjreddie/darknet) | [link](https://github.com/pjreddie/darknet) | - |
| DarkNet-53 | A | A | A | A | A | A | [link](https://arxiv.org/abs/1804.02767) | [link](https://github.com/pjreddie/darknet) | 2018 |
| ChannelNet | a | a | a | - | a | - | [link](https://arxiv.org/abs/1809.01330) | [link](https://github.com/HongyangGao/ChannelNets) | 2018 |
| iSQRT-COV-ResNet | a | a | - | - | - | - | [link](https://arxiv.org/abs/1712.01034) | [link](https://github.com/jiangtaoxie/fast-MPN-COV) | 2017 |
| RevNet | - | a | - | - | - | - | [link](https://arxiv.org/abs/1707.04585) | [link](https://github.com/renmengye/revnet-public) | 2017 |
| i-RevNet | A | A | A | - | - | - | [link](https://arxiv.org/abs/1802.07088) | [link](https://github.com/jhjacobsen/pytorch-i-revnet) | 2018 |
| BagNet | A | A | A | - | - | A | [link](https://openreview.net/pdf?id=SkfMWhAqYQ) | [link](https://github.com/wielandbrendel/bag-of-local-features-models) | 2019 |
| DLA | A | A | A | - | - | A | [link](https://arxiv.org/abs/1707.06484) | [link](https://github.com/ucbdrive/dla) | 2017 |
| MSDNet | a | ab | - | - | - | - | [link](https://arxiv.org/abs/1703.09844) | [link](https://github.com/gaohuang/MSDNet) | 2017 |
| FishNet | A | A | A | - | - | - | [link](http://papers.nips.cc/paper/7356-fishnet-a-versatile-backbone-for-image-region-and-pixel-level-prediction.pdf) | [link](https://github.com/kevin-ssy/FishNet) | 2018 |
| ESPNetv2 | A | A | A | - | - | - | [link](https://arxiv.org/abs/1811.11431) | [link](https://github.com/sacmehta/ESPNetv2) | 2018 |
| DiCENet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1906.03516) | [link](https://github.com/sacmehta/EdgeNets) | 2019 |
| HRNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1908.07919) | [link](https://github.com/HRNet/HRNet-Image-Classification) | 2019 |
| VoVNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1904.09730) | [link](https://github.com/stigma0617/VoVNet.pytorch) | 2019 |
| SelecSLS | A | A | A | - | - | A | [link](https://arxiv.org/abs/1907.00837) | [link](https://github.com/mehtadushy/SelecSLS-Pytorch) | 2019 |
| HarDNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1909.00948) | [link](https://github.com/PingoLH/Pytorch-HarDNet) | 2019 |
| X-DenseNet | aBCD | aBCD | aBCD | - | - | - | [link](https://arxiv.org/abs/1711.08757) | [link](https://github.com/DrImpossible/Deep-Expander-Networks) | 2017 |
| SqueezeNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1602.07360) | [link](https://github.com/DeepScale/SqueezeNet) | 2016 |
| SqueezeResNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1602.07360) | - | 2016 |
| SqueezeNext | A | A | A | A | A | A | [link](https://arxiv.org/abs/1803.10615) | [link](https://github.com/amirgholami/SqueezeNext) | 2018 |
| ShuffleNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1707.01083) | - | 2017 |
| ShuffleNetV2 | A | A | A | A | A | A | [link](https://arxiv.org/abs/1807.11164) | - | 2018 |
| MENet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1803.09127) | [link](https://github.com/clavichord93/MENet) | 2018 |
| MobileNet | AE | AE | AE | A | A | AE | [link](https://arxiv.org/abs/1704.04861) | [link](https://github.com/tensorflow/models) | 2017 |
| FD-MobileNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1802.03750) | [link](https://github.com/clavichord93/FD-MobileNet) | 2018 |
| MobileNetV2 | A | A | A | A | A | A | [link](https://arxiv.org/abs/1801.04381) | [link](https://github.com/tensorflow/models) | 2018 |
| MobileNetV3 | A | A | A | A | - | A | [link](https://arxiv.org/abs/1905.02244) | [link](https://github.com/tensorflow/models) | 2019 |
| IGCV3 | A | A | A | A | A | A | [link](https://arxiv.org/abs/1806.00178) | [link](https://github.com/homles11/IGCV3) | 2018 |
| GhostNet | a | a | a | - | - | a | [link](https://arxiv.org/abs/1911.11907) | [link](https://github.com/iamhankai/ghostnet) | 2019 |
| MnasNet | A | A | A | A | A | A | [link](https://arxiv.org/abs/1807.11626) | - | 2018 |
| DARTS | A | A | A | - | - | - | [link](https://arxiv.org/abs/1806.09055) | [link](https://github.com/quark0/darts) | 2018 |
| ProxylessNAS | AE | AE | AE | - | - | AE | [link](https://arxiv.org/abs/1812.00332) | [link](https://github.com/mit-han-lab/ProxylessNAS) | 2018 |
| FBNet-C | A | A | A | - | - | A | [link](https://arxiv.org/abs/1812.03443) | - | 2018 |
| Xception | A | A | A | - | - | A | [link](https://arxiv.org/abs/1610.02357) | [link](https://github.com/fchollet/deep-learning-models) | 2016 |
| InceptionV3 | A | A | A | - | - | A | [link](https://arxiv.org/abs/1512.00567) | [link](https://github.com/tensorflow/models) | 2015 |
| InceptionV4 | A | A | A | - | - | A | [link](https://arxiv.org/abs/1602.07261) | [link](https://github.com/tensorflow/models) | 2016 |
| InceptionResNetV1 | A | A | A | - | - | A | [link](https://arxiv.org/abs/1602.07261) | [link](https://github.com/tensorflow/models) | 2016 |
| InceptionResNetV2 | A | A | A | - | - | A | [link](https://arxiv.org/abs/1602.07261) | [link](https://github.com/tensorflow/models) | 2016 |
| PolyNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1611.05725) | [link](https://github.com/open-mmlab/polynet) | 2016 |
| NASNet-Large | A | A | A | - | - | A | [link](https://arxiv.org/abs/1707.07012) | [link](https://github.com/tensorflow/models) | 2017 |
| NASNet-Mobile | A | A | A | - | - | A | [link](https://arxiv.org/abs/1707.07012) | [link](https://github.com/tensorflow/models) | 2017 |
| PNASNet-Large | A | A | A | - | - | A | [link](https://arxiv.org/abs/1712.00559) | [link](https://github.com/tensorflow/models) | 2017 |
| SPNASNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1904.02877) | [link](https://github.com/dstamoulis/single-path-nas) | 2019 |
| EfficientNet | A | A | A | A | - | A | [link](https://arxiv.org/abs/1905.11946) | [link](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) | 2019 |
| MixNet | A | A | A | - | - | A | [link](https://arxiv.org/abs/1907.09595) | [link](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet) | 2019 |
| NIN | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1312.4400) | [link](https://gist.github.com/mavenlin/e56253735ef32c3c296d) | 2013 |
| RoR-3 | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1608.02908) | - | 2016 |
| RiR | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1603.08029) | - | 2016 |
| ResDrop-ResNet | bcd | bcd | bcd | - | - | - | [link](https://arxiv.org/abs/1603.09382) | [link](https://github.com/yueatsprograms/Stochastic_Depth) | 2016 |
| Shake-Shake-ResNet | BCD | BCD | BCD | - | - | - | [link](https://arxiv.org/abs/1705.07485) | [link](https://github.com/xgastaldi/shake-shake) | 2017 |
| ShakeDrop-ResNet | bcd | bcd | bcd | - | - | - | [link](https://arxiv.org/abs/1802.02375) | - | 2018 |
| FractalNet | bc | bc | - | - | - | - | [link](https://arxiv.org/abs/1605.07648) | [link](https://github.com/gustavla/fractalnet) | 2016 |
| NTS-Net | E | E | E | - | - | - | [link](https://arxiv.org/abs/1809.00287) | [link](https://github.com/yangze0930/NTS-Net) | 2018 |## Table of implemented segmentation models
Some remarks:
- `a/A` corresponds to Pascal VOC2012.
- `b/B` corresponds to ADE20K.
- `c/C` corresponds to Cityscapes.
- `d/D` corresponds to COCO.
- `e/E` corresponds to CelebAMask-HQ.| Model | [Gluon](gluon/README.md) | [PyTorch](https://github.com/osmr/pytorchcv/blob/master/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TF](tensorflow_/README.md) | [TF2](tensorflow_/README.md) | Paper | Repo | Year |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| PSPNet | ABCD | ABCD | ABCD | - | - | ABCD | [link](https://arxiv.org/abs/1612.01105) | - | 2016 |
| DeepLabv3 | ABcD | ABcD | ABcD | - | - | ABcD | [link](https://arxiv.org/abs/1706.05587) | - | 2017 |
| FCN-8s(d) | ABcD | ABcD | ABcD | - | - | ABcD | [link](https://arxiv.org/abs/1411.4038) | - | 2014 |
| ICNet | C | C | C | - | - | C | [link](https://arxiv.org/abs/1704.08545) | [link](https://github.com/hszhao/ICNet) | 2017 |
| SINet | C | C | C | - | - | c | [link](https://arxiv.org/abs/1911.09099) | [link](https://github.com/clovaai/c3_sinet) | 2019 |
| BiSeNet | e | e | e | - | - | e | [link](https://arxiv.org/abs/1808.00897) | - | 2018 |
| DANet | C | C | C | - | - | C | [link](https://arxiv.org/abs/1809.02983) | [link](https://github.com/junfu1115/DANet) | 2018 |
| Fast-SCNN | C | C | C | - | - | C | [link](https://arxiv.org/abs/1902.04502) | - | 2019 |
| CGNet | c | c | c | - | - | c | [link](https://arxiv.org/abs/1811.08201) | [link](https://github.com/wutianyiRosun/CGNet) | 2018 |
| DABNet | c | c | c | - | - | c | [link](https://arxiv.org/abs/1907.11357) | [link](https://github.com/Reagan1311/DABNet) | 2019 |
| FPENet | c | c | c | - | - | c | [link](https://arxiv.org/abs/1909.08599) | - | 2019 |
| ContextNet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1805.04554) | - | 2018 |
| LEDNet | c | c | c | - | - | c | [link](https://arxiv.org/abs/1905.02423) | - | 2019 |
| ESNet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1906.09826) | - | 2019 |
| EDANet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1809.06323) | [link](https://github.com/shaoyuanlo/EDANet) | 2018 |
| ENet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1606.02147) | - | 2016 |
| ERFNet | - | c | - | - | - | - | [link](http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf) | - | 2017 |
| LinkNet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1707.03718) | - | 2017 |
| SegNet | - | c | - | - | - | - | [link](https://arxiv.org/abs/1511.00561) | - | 2015 |
| U-Net | - | c | - | - | - | - | [link](https://arxiv.org/abs/1505.04597) | - | 2015 |
| SQNet | - | c | - | - | - | - | [link](https://openreview.net/pdf?id=S1uHiFyyg) | - | 2016 |## Table of implemented object detection models
Some remarks:
- `a/A` corresponds to COCO.| Model | [Gluon](gluon/README.md) | [PyTorch](https://github.com/osmr/pytorchcv/blob/master/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TF](tensorflow_/README.md) | [TF2](tensorflow2/README.md) | Paper | Repo | Year |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| CenterNet | a | a | a | - | - | a | [link](https://arxiv.org/abs/1904.07850) | [link](https://github.com/xingyizhou/CenterNet) | 2019 |## Table of implemented human pose estimation models
Some remarks:
- `a/A` corresponds to COCO.| Model | [Gluon](gluon/README.md) | [PyTorch](https://github.com/osmr/pytorchcv/blob/master/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TF](tensorflow_/README.md) | [TF2](tensorflow2/README.md) | Paper | Repo | Year |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| AlphaPose | A | A | A | - | - | A | [link](https://arxiv.org/abs/1612.00137) | [link](https://github.com/MVIG-SJTU/AlphaPose) | 2016 |
| SimplePose | A | A | A | - | - | A | [link](https://arxiv.org/abs/1804.06208) | [link](https://github.com/microsoft/human-pose-estimation.pytorch) | 2018 |
| SimplePose(Mobile) | A | A | A | - | - | A | [link](https://arxiv.org/abs/1804.06208) | - | 2018 |
| Lightweight OpenPose | A | A | A | - | - | A | [link](https://arxiv.org/abs/1811.12004) | [link](https://github.com/Daniil-Osokin/lightweight-human-pose-estimation-3d-demo.pytorch) | 2018 |
| IBPPose | A | A | A | - | - | A | [link](https://arxiv.org/abs/1911.10529) | [link](https://github.com/jialee93/Improved-Body-Parts) | 2019 |## Table of implemented automatic speech recognition models
Some remarks:
- `a/A` corresponds to LibriSpeech.
- `b/B` corresponds to Mozilla Common Voice.| Model | [Gluon](gluon/README.md) | [PyTorch](https://github.com/osmr/pytorchcv/blob/master/README.md) | [Chainer](chainer_/README.md) | [Keras](keras_/README.md) | [TF](tensorflow_/README.md) | [TF2](tensorflow2/README.md) | Paper | Repo | Year |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Jasper DR | AB | AB | ab | - | - | ab | [link](https://arxiv.org/abs/1904.03288) | [link](https://github.com/NVIDIA/NeMo) | 2019 |
| QuartzNet | AB | AB | ab | - | - | ab | [link](https://arxiv.org/abs/1910.10261) | [link](https://github.com/NVIDIA/NeMo) | 2019 |