Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/owen-liuyuxuan/kitti360_visualize
Visualize KITTI360 sequences on ROS with full tf support.
https://github.com/owen-liuyuxuan/kitti360_visualize
autonomous-driving computer-vision dataset kitti-360
Last synced: 4 days ago
JSON representation
Visualize KITTI360 sequences on ROS with full tf support.
- Host: GitHub
- URL: https://github.com/owen-liuyuxuan/kitti360_visualize
- Owner: Owen-Liuyuxuan
- Created: 2023-02-05T06:56:16.000Z (almost 2 years ago)
- Default Branch: master
- Last Pushed: 2023-02-05T07:04:22.000Z (almost 2 years ago)
- Last Synced: 2023-03-05T21:16:19.469Z (over 1 year ago)
- Topics: autonomous-driving, computer-vision, dataset, kitti-360
- Language: Python
- Homepage:
- Size: 2.7 MB
- Stars: 4
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
# Kitti360 Visualization
Ros package to visualize KITTI-360 data with RVIZ
## Getting Started:
### Data Preparation
Download the [KITTI360 dataset](https://www.cvlibs.net/datasets/kitti-360/download.php) to your computer. We support the [perspective images](https://s3.eu-central-1.amazonaws.com/avg-projects/KITTI-360/a1d81d9f7fc7195c937f9ad12e2a2c66441ecb4e/download_2d_perspective.zip), [Raw Velodyne Scans](https://s3.eu-central-1.amazonaws.com/avg-projects/KITTI-360/a1d81d9f7fc7195c937f9ad12e2a2c66441ecb4e/download_3d_velodyne.zip), [calibrations](https://s3.eu-central-1.amazonaws.com/avg-projects/KITTI-360/a1d81d9f7fc7195c937f9ad12e2a2c66441ecb4e/download_3d_velodyne.zip), [vehicle poses](https://s3.eu-central-1.amazonaws.com/avg-projects/KITTI-360/89a6bae3c8a6f789e12de4807fc1e8fdcf182cf4/data_poses.zip).
Ended up as : KITTI-360/{calibration/data_2d_raw/data_3d_raw/data_poses}.
Overwrite the folder names in the launch file to your data.
### Software Prerequisite
This repo runs with ROS python3 (noetic), and we expect PyQt5 correctly setup with ROS installation.
Clone the repo under the {workspace}/src/ folder. Overwrite the folder names in the [launch file](./launch/visualize_launch.launch) to point to your data.
```bash
cd catkin_ws/src
git clone https://github.com/Owen-Liuyuxuan/kitti360_visualize
cd ..
catkin_make
source devel/setup.bash # devel/setup.zsh or devel/setup.sh for your own need.# modify and check the data path!! Also control the publishing frequency of the data stream.
nano src/kitti360_visualize/launch/visualize_launch.launch# this will launch the data publisher / rviz / GUI controller
roslaunch kitti360_visualize visualize_launch.launch
```### Core Features:
- [x] KITTI-360 raw data sequence support.
- [x] Stereo RGB cameras.
- [x] LiDAR, RGB point clouds.
- [x] TF-tree (camera and LiDAR).
- [x] GUI control & ROS topic control.## GUI
![image](docs/gui.png)
### User manual:
index: integer selection notice do not overflow the index number.
Stop: stop any data loading or processing of the visualization node.
Pause: prevent pointer of the sequantial data stream from increasing, keep the current frame.Cancel: quit. (click this before killing the entire launch process)
## Raw Data & Depth Prediction Dataset
We support video-like streaming raw data. Depth Prediction dataset follows similar structure of raw data, thus can be visualized in RGB point clouds together(optionally).
![image](docs/sequence.png)
### ROS Topics
/kitti360/left_camera/image ([sensor_msgs/Image](http://docs.ros.org/en/api/sensor_msgs/html/msg/Image.html))
/kitti360/right_camera/image ([sensor_msgs/Image](http://docs.ros.org/en/api/sensor_msgs/html/msg/Image.html))
/kitti360/left_camera/camera_info ([sensor_msgs/CameraInfo](http://docs.ros.org/en/api/sensor_msgs/html/msg/CameraInfo.html))
/kitti360/right_camera/camera_info ([sensor_msgs/CameraInfo](http://docs.ros.org/en/api/sensor_msgs/html/msg/CameraInfo.html))
/kitti360/lidar ([sensor_msgs/PointCloud2](http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud2.html))
The tf trees are also well constructed. We have a predefined rviz file for visualizing all topics and tf trees.