Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ownthink/jiagu

Jiagu深度学习自然语言处理工具 知识图谱关系抽取 中文分词 词性标注 命名实体识别 情感分析 新词发现 关键词 文本摘要 文本聚类
https://github.com/ownthink/jiagu

chinese-word-segmentation cws ner nlp pos

Last synced: 3 days ago
JSON representation

Jiagu深度学习自然语言处理工具 知识图谱关系抽取 中文分词 词性标注 命名实体识别 情感分析 新词发现 关键词 文本摘要 文本聚类

Awesome Lists containing this project

README

        

# Jiagu自然语言处理工具
>>> Jiagu使用大规模语料训练而成。将提供中文分词、词性标注、命名实体识别、情感分析、知识图谱关系抽取、关键词抽取、文本摘要、新词发现、情感分析、文本聚类等常用自然语言处理功能。参考了各大工具优缺点制作,将Jiagu回馈给大家。

## 目录
* [安装方式](#安装方式)
* [使用方式](#使用方式)
* [评价标准](#评价标准)
* [附录说明](#附录)

---

提供的功能有:
* 中文分词
* 词性标注
* 命名实体识别
* 知识图谱关系抽取
* 关键词提取
* 文本摘要
* 新词发现
* 情感分析
* 文本聚类
* 等等。。。。

---

## 安装方式
pip安装
```shell
pip install -U jiagu
```
如果比较慢,可以使用清华的pip源:`pip install -U jiagu -i https://pypi.tuna.tsinghua.edu.cn/simple`

源码安装
```shell
git clone https://github.com/ownthink/Jiagu
cd Jiagu
python3 setup.py install
```

## 使用方式
1. 快速上手:分词、词性标注、命名实体识别
```python3
import jiagu

#jiagu.init() # 可手动初始化,也可以动态初始化

text = '厦门明天会不会下雨'

words = jiagu.seg(text) # 分词
print(words)

pos = jiagu.pos(words) # 词性标注
print(pos)

ner = jiagu.ner(words) # 命名实体识别
print(ner)
```

2. 中文分词
```python3
import jiagu

text = '汉服和服装、维基图谱'

words = jiagu.seg(text)
print(words)

# jiagu.load_userdict('dict/user.dict') # 加载自定义字典,支持字典路径、字典列表形式。
jiagu.load_userdict(['汉服和服装'])

words = jiagu.seg(text) # 自定义分词,字典分词模式有效
print(words)
```

3. 知识图谱关系抽取

仅用于测试用,可以pip3 install jiagu==0.1.8,只能使用百科的描述进行测试。效果更佳的后期将会开放api。
```python3
import jiagu

# 吻别是由张学友演唱的一首歌曲。
# 《盗墓笔记》是2014年欢瑞世纪影视传媒股份有限公司出品的一部网络季播剧,改编自南派三叔所著的同名小说,由郑保瑞和罗永昌联合导演,李易峰、杨洋、唐嫣、刘天佐、张智尧、魏巍等主演。

text = '姚明1980年9月12日出生于上海市徐汇区,祖籍江苏省苏州市吴江区震泽镇,前中国职业篮球运动员,司职中锋,现任中职联公司董事长兼总经理。'
knowledge = jiagu.knowledge(text)
print(knowledge)
```
训练数据:https://github.com/ownthink/KnowledgeGraphData

4. 关键词提取
```python3
import jiagu

text = '''
该研究主持者之一、波士顿大学地球与环境科学系博士陈池(音)表示,“尽管中国和印度国土面积仅占全球陆地的9%,但两国为这一绿化过程贡献超过三分之一。考虑到人口过多的国家一般存在对土地过度利用的问题,这个发现令人吃惊。”
NASA埃姆斯研究中心的科学家拉玛·内曼尼(Rama Nemani)说,“这一长期数据能让我们深入分析地表绿化背后的影响因素。我们一开始以为,植被增加是由于更多二氧化碳排放,导致气候更加温暖、潮湿,适宜生长。”
“MODIS的数据让我们能在非常小的尺度上理解这一现象,我们发现人类活动也作出了贡献。”
NASA文章介绍,在中国为全球绿化进程做出的贡献中,有42%来源于植树造林工程,对于减少土壤侵蚀、空气污染与气候变化发挥了作用。
据观察者网过往报道,2017年我国全国共完成造林736.2万公顷、森林抚育830.2万公顷。其中,天然林资源保护工程完成造林26万公顷,退耕还林工程完成造林91.2万公顷。京津风沙源治理工程完成造林18.5万公顷。三北及长江流域等重点防护林体系工程完成造林99.1万公顷。完成国家储备林建设任务68万公顷。
'''

keywords = jiagu.keywords(text, 5) # 关键词
print(keywords)
```

5. 文本摘要
```python3
import jiagu

fin = open('input.txt', 'r')
text = fin.read()
fin.close()

summarize = jiagu.summarize(text, 3) # 摘要
print(summarize)
```

6. 新词发现
```python3
import jiagu

jiagu.findword('input.txt', 'output.txt') # 根据文本,利用信息熵做新词发现。
```

7. 情感分析
```python3
import jiagu

text = '很讨厌还是个懒鬼'
sentiment = jiagu.sentiment(text)
print(sentiment)
```

8. 文本聚类
```python3
import jiagu

docs = [
"百度深度学习中文情感分析工具Senta试用及在线测试",
"情感分析是自然语言处理里面一个热门话题",
"AI Challenger 2018 文本挖掘类竞赛相关解决方案及代码汇总",
"深度学习实践:从零开始做电影评论文本情感分析",
"BERT相关论文、文章和代码资源汇总",
"将不同长度的句子用BERT预训练模型编码,映射到一个固定长度的向量上",
"自然语言处理工具包spaCy介绍",
"现在可以快速测试一下spaCy的相关功能,我们以英文数据为例,spaCy目前主要支持英文和德文"
]
cluster = jiagu.text_cluster(docs)
print(cluster)
```

## 评价标准
1. msr测试结果(旧版本)

![msr](https://github.com/ownthink/evaluation/blob/master/images/2.png)

## 附录
1. 词性标注说明
```text
n   普通名词
nt   时间名词
nd   方位名词
nl   处所名词
nh   人名
nhf  姓
nhs  名
ns   地名
nn   族名
ni   机构名
nz   其他专名
v   动词
vd  趋向动词
vl  联系动词
vu  能愿动词
a   形容词
f   区别词
m   数词  
q   量词
d   副词
r   代词
p   介词
c   连词
u   助词
e   叹词
o   拟声词
i   习用语
j   缩略语
h   前接成分
k   后接成分
g   语素字
x   非语素字
w   标点符号
ws  非汉字字符串
wu  其他未知的符号
```

2. 命名实体说明(采用BIO标记方式)
```text
B-PER、I-PER 人名
B-LOC、I-LOC 地名
B-ORG、I-ORG 机构名
```

## 加入我们
```text
人工智能qq群1:90780053(满)
人工智能qq群2:956936481(满)
人工智能qq群3:1160292084(满)
人工智能qq群4:1019825236(满)
人工智能qq群5:535614287
知识图谱qq群1:55152968
知识图谱qq群2:740104333(满)
知识图谱qq群3:586457987(满)
知识图谱qq群4:858829119

微信群可联系作者微信:MrYener,作者邮箱联系方式:[email protected]
```

捐赠作者(您的鼓励是作者开源最大的动力!!!):捐赠致谢

![收款码](https://github.com/ownthink/KnowledgeGraph/raw/master/img/%E6%94%B6%E6%AC%BE%E7%A0%81.jpg)

## 贡献者:
1. [Yener](https://github.com/ownthink)
2. [zengbin93](https://github.com/zengbin93)
3. [dirtdust](https://github.com/dirtdust)
4. [frankchen7788](https://github.com/frankchen7788)