https://github.com/p-sira/deeplabcut2yolo
Convert DeepLabCut to YOLO
https://github.com/p-sira/deeplabcut2yolo
ai deeplabcut yolo yolov8 yolov8-pose yolov8-segmentation yolov8n
Last synced: 8 months ago
JSON representation
Convert DeepLabCut to YOLO
- Host: GitHub
- URL: https://github.com/p-sira/deeplabcut2yolo
- Owner: p-sira
- License: other
- Created: 2024-11-17T13:49:50.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2025-01-25T04:17:28.000Z (9 months ago)
- Last Synced: 2025-01-25T04:32:40.876Z (9 months ago)
- Topics: ai, deeplabcut, yolo, yolov8, yolov8-pose, yolov8-segmentation, yolov8n
- Language: Python
- Homepage:
- Size: 20.9 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
- Citation: CITATION.bib
Awesome Lists containing this project
README
# deeplabcut2yolo
**Convert DLC to YOLO,**\
**Lightning-fast and hassle-free.**[](https://www.gnu.org/licenses/gpl-3.0)
[](https://pypi.org/project/deeplabcut2yolo/)
[](https://pepy.tech/projects/deeplabcut2yolo)
[](https://p-sira.github.io/deeplabcut2yolo/)**deeplabcut2yolo** facilitates training [DeepLabCut datasets](https://benchmark.deeplabcut.org/datasets.html) on [YOLO](https://docs.ultralytics.com/) models. Deeplabcut2yolo automatically converts DeepLabCut (DLC) labels to COCO-like format compatible with YOLO, while providing customizability for more advanced users, so you can spend your energy on what matters!

*All DeepLabCut datasets belong to their respective owner under CC BY-NC 4.0. This particular image is the training data for YOLO, converted using deeplabcut2yolo from the Tri-Mouse dataset (Lauer et al., 2022).*## Quick Start
```python
import deeplabcut2yolo as d2yd2y.convert("./deeplabcut-dataset/")
# To also generate data.yml
d2y.convert(
dataset_path,
train_paths=train_paths,
val_paths=val_paths,
skeleton_symmetric_pairs=skeleton_symmetric_pairs,
data_yml_path="data.yml",
class_names=class_names,
verbose=True,
)
```To install deeplabcut2yolo using pip:
```
pip install deeplabcut2yolo
```For more information, see [examples](https://github.com/p-sira/deeplabcut2yolo/tree/main/examples) and [documentation](https://p-sira.github.io/deeplabcut2yolo/).
## Contribution
You can contribute to deeplabcut2yolo by making pull requests. Currently, these are high-priority features:
- Testing module and test cases
- Documentation## Citation
Citation is not required but is greatly appreciated. If this project helps you,
please cite using the following APA-style reference> Pornsiriprasert, S. (2025). *Deeplabcut2yolo: A Python Library for Converting DeepLabCut Dataset to YOLO Format* (Version 2.2.4) [Computer software]. GitHub. https://github.com/p-sira/deeplabcut2yolo/
or this BibTeX entry.
```
@software{deeplabcut2yolo,
author = {{Pornsiriprasert, S}},
title = {Deeplabcut2yolo: A Python Library for Converting DeepLabCut Dataset to YOLO Format},
url = {https://github.com/p-sira/deeplabcut2yolo/},
version = {2.2.4},
publisher = {GitHub},
year = {2025},
month = {1},
}
```