An open API service indexing awesome lists of open source software.

https://github.com/p-sira/deeplabcut2yolo

Convert DeepLabCut to YOLO
https://github.com/p-sira/deeplabcut2yolo

ai deeplabcut yolo yolov8 yolov8-pose yolov8-segmentation yolov8n

Last synced: 8 months ago
JSON representation

Convert DeepLabCut to YOLO

Awesome Lists containing this project

README

          

# deeplabcut2yolo
**Convert DLC to YOLO,**\
**Lightning-fast and hassle-free.**

[![License: GPL v3](https://img.shields.io/badge/license-GPLv3-red.svg)](https://www.gnu.org/licenses/gpl-3.0)
[![PyPI Package Version](https://img.shields.io/pypi/v/deeplabcut2yolo?label=pypi%20package&color=a190ff)](https://pypi.org/project/deeplabcut2yolo/)
[![Package Total Downloads](https://img.shields.io/pepy/dt/deeplabcut2yolo)](https://pepy.tech/projects/deeplabcut2yolo)
[![Documentation](https://img.shields.io/badge/docs-passing-default)](https://p-sira.github.io/deeplabcut2yolo/)

**deeplabcut2yolo** facilitates training [DeepLabCut datasets](https://benchmark.deeplabcut.org/datasets.html) on [YOLO](https://docs.ultralytics.com/) models. Deeplabcut2yolo automatically converts DeepLabCut (DLC) labels to COCO-like format compatible with YOLO, while providing customizability for more advanced users, so you can spend your energy on what matters!

![Results from d2y](d2y-trimouse.jpg "DLC Tri-mouse dataset converted for YOLO training")
*All DeepLabCut datasets belong to their respective owner under CC BY-NC 4.0. This particular image is the training data for YOLO, converted using deeplabcut2yolo from the Tri-Mouse dataset (Lauer et al., 2022).*

## Quick Start
```python
import deeplabcut2yolo as d2y

d2y.convert("./deeplabcut-dataset/")

# To also generate data.yml
d2y.convert(
dataset_path,
train_paths=train_paths,
val_paths=val_paths,
skeleton_symmetric_pairs=skeleton_symmetric_pairs,
data_yml_path="data.yml",
class_names=class_names,
verbose=True,
)
```

To install deeplabcut2yolo using pip:
```
pip install deeplabcut2yolo
```

For more information, see [examples](https://github.com/p-sira/deeplabcut2yolo/tree/main/examples) and [documentation](https://p-sira.github.io/deeplabcut2yolo/).

## Contribution
You can contribute to deeplabcut2yolo by making pull requests. Currently, these are high-priority features:
- Testing module and test cases
- Documentation

## Citation
Citation is not required but is greatly appreciated. If this project helps you,
please cite using the following APA-style reference

> Pornsiriprasert, S. (2025). *Deeplabcut2yolo: A Python Library for Converting DeepLabCut Dataset to YOLO Format* (Version 2.2.4) [Computer software]. GitHub. https://github.com/p-sira/deeplabcut2yolo/

or this BibTeX entry.

```
@software{deeplabcut2yolo,
author = {{Pornsiriprasert, S}},
title = {Deeplabcut2yolo: A Python Library for Converting DeepLabCut Dataset to YOLO Format},
url = {https://github.com/p-sira/deeplabcut2yolo/},
version = {2.2.4},
publisher = {GitHub},
year = {2025},
month = {1},
}
```