Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/pablobarbera/quant3materials
PhD course: Quantitative Methods for Political Science III (NYU) -- Recitation Materials
https://github.com/pablobarbera/quant3materials
Last synced: about 1 month ago
JSON representation
PhD course: Quantitative Methods for Political Science III (NYU) -- Recitation Materials
- Host: GitHub
- URL: https://github.com/pablobarbera/quant3materials
- Owner: pablobarbera
- License: gpl-2.0
- Created: 2013-11-22T18:12:48.000Z (about 11 years ago)
- Default Branch: master
- Last Pushed: 2014-12-19T17:54:08.000Z (about 10 years ago)
- Last Synced: 2024-11-11T01:35:12.530Z (about 2 months ago)
- Language: R
- Size: 8.15 MB
- Stars: 53
- Watchers: 7
- Forks: 28
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## Quantitative Methods for Political Science 3 ##
This repository contains a selection of recitation materials prepared by [Pablo Barberá](http://www.pablobarbera.com) for the PhD-level course "Quantitative Methods for Political Science 3", taught by [Prof. Nathaniel Beck](http://politics.as.nyu.edu/object/nathanielbeck) in the Fall of 2013 at New York University.
## Maximum likelihood ##
- [(Re-)introduction to R](maxlk/lab1_r_intro.R)
- [Recovering the parameters of a Poisson and a Beta distribution using maximum likelihood](maxlk/lab1_maxlk.R)
- [Recovering the parameters of a exponential distribution using maximum likelihood](maxlk/lab3_exponential_maxlk.R)
- [Probit regression and quantities of interest](maxlk/lab3_probit_qois.R)
- [Probit/Logit and marginal effects](maxlk/lab4_probit_logit_marginal.R)
- [Ordinal probit and marginal effects](maxlk/lab4_oprobit_marginals.R)
- [Identification in logit regression](maxlk/lab5_identification_logit.R)
- [OLS vs Poisson regression](maxlk/lab6_poisson.R)## Duration models ##
- [Duration models with R](duration/lab6_duration_models.R)
## Time-series analysis ##
- [Introduction to time-series with R](timeseries/lab7_time_series.R)
- [Impulse/unit response functions for ADL model](timeseries/lab8_response_functions_ADL.R)
- [Time-series and stationarity](timeseries/lab8_stationary_time_series.R)
- [Cointegration and error-correction models](timeseries/lab9_cointegration_ecm.R)## Bayesian statistics ##
- [Accept-reject sampling of a beta distribution](bayesian/lab12_accept_reject_sampler.R)
- [Bayesian samplers (grid sampling, Metropolis-Hastings, Gibbs, Hamiltonian Monte Carlo)](bayesian/lab12_samplers.R)
- [Bayesian Poisson Regression](bayesian/lab12_bayesian_poisson.R)
- [Bayesian Probit Regression](bayesian/lab13_bayesian_probit.R)
- [Bayesian Hierarchical Regression](bayesian/lab13_hierarchical_model.R)
- [Introduction to Multilevel Regression with Poststratification](bayesian/lab13_mrp_intro.R)
- [Introduction to Item-Response Theory models](bayesian/lab13_IRT_intro.R)
- [Introduction to High-Performance Computing](bayesian/lab14_HPC_cheatsheet.pdf)
- [More advanced examples of IRT models](bayesian/lab14_IRT_issues.R)